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Abstract

Incentives often fail in inducing economic agents to engage in a de-
sirable activity. Sometimes this restriction on implementability can
be overcome by assigning tasks differently. This paper shows that
any restriction of implementability is caused by an identification prob-
lem, describes task assignments that can solve this problem and pro-
vides conditions under which such assignments exist. Applying the
findings to established and new moral hazard models yields insights
into optimal task assignment, uncovers the reason why certain task
assignments, such as advocacy or specialization, overcome restricted
implementability, and formalizes a wide-spread type of multi-tasking
problem.
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Introduction

Often, it is hard to get economic agents to engage in desired activities. In

legendary examples, incentives based on number of lines programmed led to

longer but not necessarily better programs at AT&T and secretaries being

paid by the number of key strokes were found hitting the space bar during

lunch break at General Electric.1 Renown economic models illustrate that

better quality cannot be obtained from a builder when only the speed of

construction is observable (Holmström and Milgrom, 1991) and that a single

investigator slacks with respect to finding either exculpatory or incriminating

evidence when incentives can only be attached to the court’s ruling (Dewa-

tripont and Tirole, 1999). In all these examples, it is impossible to provide

incentives based on the available observable outcomes (signals) such that

agents act in a desired manner; implementability is limited. However, by

assigning tasks differently this restriction can sometimes be overcome. For

example, Ciba Geigy succeeded in generating more innovative products only

after dividing their research and development department2 and Dewatripont

and Tirole famously proposed to obtain exculpatory and incriminating ev-

idence by having two advocates rather than a single investigator. In these

examples, task assignment affects whether desired behavior can be induced

and hence the loss from being unable to directly stipulate the desired activity

1More recently, Ben Arnoldy reported in the Christian Science Monitor (28th of

July 2010) on attempts to reduce the negative effects of the Colorado potato beetle in

Afghanistan by paying farmers 5$ for each bottle filled with such beetles; as a conse-

quence, some farmers started breeding them.
2See “The Ambidextrous Organization” by O’Reilly and Thushman in Harvard Busi-

ness Review April 2004.
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(agency costs). Institutions, contracts, etc. that minimize agency costs can

hence not be understood fully without studying implementability and how

it depends on task assignment.

The literature offers no comprehensive view on why and when task as-

signment affects implementability. In the advocates model, the effect is usu-

ally attributed to the conflicting nature of the two desired types of effort

on the signal (see, e.g, Dewatripont, Jewitt, and Tirole 2000 or Bolton and

Dewatripont 2005). However, Ratto and Schnedler (2008) show that task

separation can also induce desired behavior if tasks do not conflict. Corts

(2007) argues that switching from individual to team accountability ‘enriches

signals.’ As argued in Section 6.2, such a change in accountability is not

essential either. The aforementioned legendary examples of limited imple-

mentability have been associated with the fact that agents engage in more

than one task (multi-tasking)–see for example Prendergast’s well-known sur-

vey on incentives (1999). However, as will become clear later, multi-tasking

neither causes limited implementability in the legendary examples nor in

Holmström and Milgrom’s seminal article on multi-tasking (1991).3

In summary, while it is clear that task assignment can affect agency costs

by changing which activity choices can be induced, it remains to be explained

(i) what restricts implementability in the first place, (ii) how task assignment

affects this restriction, (iii) how the restriction relates to multi-tasking, and

(iv) when task assignments can overcome the restriction. The present article

sheds some light on these issues.

3The respective argument in Section 6 clarifies, supports, and extends Cort’s claim

(2007) that (once randomness is removed) Holmström and Milgrom feature ‘clearly no

multitask problem.’
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The crucial notion to understand the effect of task-assignment on imple-

mentability is that of conditional identification. Given a specific task par-

tition, a generic activity choice is implementable if and only if each agent’s

behavior can be identified from signals given that all other agents do not

change behavior (Theorem 1). This notion of identification is different from

respective notions in econometrics or the literature on partnerships because

of its conditional character:4 it suffices that it would be theoretically possible

to infer what some agent did if one were to know the choices of other agents.

Precisely because of the conditional nature of identification, it becomes

possible to construct a game in which activity choices form a Nash equi-

librium. For the intuition, consider deterministic signals. Holding constant

the behavior of others, conditional identification ensures that every signal

realization can only be produced in one way; by attaching rewards to the

realizations associated with some desired behavior, this behavior can be in-

duced. Task assignments affect whether activities are conditionally identified

and hence agents’ scope to generate signals. Here, this intuition is formalized

for stochastic signals using marginal analysis.5

Apart from upsetting the trade-off between incentives and insurance (Holm-

ström and Milgrom, 1991), multi-tasking increases agents’ scope and may

hence cause identification problems and restrict implementability. This type

of multi-tasking problem is necessary (and sufficient) for task assignment

to overcome identification problems (Corollary 3). This observation directly

4The detailed relationship to these notions is discussed after the formal definition of

conditional identification in Section 3.
5Whether or not marginal analysis is employed is immaterial for the link between

identification and implementability (Theorem 1): Proposition 5 offers a formalization

without relying on marginal arguments.
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implies a straightforward characterization: identification by task assignment

is possible if and only if choices at some task l can be inferred from signals

while holding constant the choices at all other tasks (Corollary 4). In short,

signals have to be task-wise injective.

The link between identification and implementability established here is

based on two propositions that are interesting in their own right. First, a spe-

cific activity can be implemented if and only if the activity’s marginal effect

on agents’ costs are a linear combination of that on signals (Proposition 1).

This result generalizes earlier findings by Feltham and Xie (1994) and Corts

(2007). A direct corollary confirms that assuming contracts to be linear is

without loss of generality when trying to determine whether an activity choice

is implementable (Corollary 1), which contrasts with Mirrlees (1999) famous

observation that assuming linearity is not innocuous when finding optimal

contracts. Second, activities are conditionally identified given a partition of

tasks if and only if each agent faces at most as many tasks as independent

signals (Proposition 2), where independence is measured by the (minimum)

rank of the matrix that describes the marginal effects of the respective agent

on signals. Task assignment thus ‘enriches’ signals if it increases the number

of independent signals relative to that of tasks such that activities become

conditionally identified.

The next section relates our findings to the literature. Section 2 illus-

trates the core concepts and main findings with a simple example. Section 3

describes the hidden action framework to which results apply and which

nests most moral hazard models as special cases; it also formally defines

implementability and identification. Section 4 then establishes that any ac-

tivity can be implemented if and only if it is (conditionally) identifiable.
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Section 5 provides necessary and sufficient conditions for identification by

task reassignment. Section 6 contains various examples of established and

new moral-hazard models in which the results on implementability help to

understand the nature of optimal contracts. Section 7 concludes.

1 Related Literature

The notion that identification is crucial for implementability is implicit in

various single-task models. Hermalin and Katz’s observe (1991) that a spe-

cific activity choice is only implementable if there is no (less costly) way for

an agent to produce the same signal distribution—see their Proposition 2.

Fudenberg, Levine, and Maskin (1994) find that in a repeated game setting

with discrete and finite signal realization, agents can be induced to engage

in desired activity choices if distributions vary with the choice (individual

full rank condition). While there are several differences to these contribu-

tions,6 probably the most important innovation here is the introduction of

multiple tasks, which is necessary to study the effect of task assignment on

implementability.

Implementability has been studied in multi-tasking models under the re-

striction that signals and contracts be linear (Feltham and Xie, 1994; Corts,

2007); the respective results are generalized here to non-linear signals (Propo-

sition 1) and the approach of limiting attention to linear contracts is justified

(Corollary 1). The paper is inspired by and closely related to Corts (2007),

6For example, implementation is reflected in Fudenberg, Levine, and Maskin (1994)

by an indifference condition, whereas here it manifests in a first-order condition. The

ramifications of this difference are explained later in the analysis.
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who also examines the effect of task assignment—albeit without uncover-

ing the central role of conditional identification. Here, the tacit mechanism

underpinning his results as well as others (see e.g. Dewatripont and Tirole,

1999) is uncovered. The generality of the findings allows for a host of new

applications; some of which are sketched later.

Following Holmström’s description of the free-rider problem (1982), sev-

eral contributions ask when it is possible to obtain efficient efforts in part-

nership problems (see e.g. Legros and Matsushima, 1991; Strausz, 1999;

Battaglini, 2006). Partnership problems differ from the setting examined

here in two important ways. First, in partnership problems, signals and

output are identical, so that it is efficient to produce signals at the lowest

costs for agents. The possibility that signals badly reflect outputs, which is

a major concern in multi-tasking models, is excluded. Accordingly, there is

no discrepancy between agents’ preferred and the optimal way to generate

signals. On the other hand, there is the difficulty that the budget must bal-

ance for all signal realizations. This difficulty can be overcome if realizations

allow for identifying at least one agent who has not deviated (an ‘innocent

agent’); deviating agents can then be punished by not letting them partic-

ipate in the revenue but handing it to the innocent agent. Using this idea,

Battaglini (2006) challenges conventional wisdom by showing elegantly that

team size does not matter for inducing an efficient allocation in partnership

problems. Rather, it is the average number of tasks per agent in relation

to the number of signals. Moreover, task assignment plays no role, which

sharply contrasts with its importance here. The differing research question

asked in this literature thus leads to different results.

Some of the issues in the present paper, e.g., implementability or task as-
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signment, are also relevant for mechanism design with hidden information.7

They are examined here from a hidden action perspective. Finally, organiza-

tion design in general and task assignment in particular can also be discussed

outside the principal-agent paradigm—see Borland and Eichberger (1998) for

an overview.

2 A Simple Example

The following example is strapped off all bells and whistles to illustrate the

results and underlying concepts and intuitions.8 In order to successfully

produce and sell a computer program, three tasks are required: programming,

debugging, and marketing. Each of the tasks involves an unobservable (real-

valued) effort choice: a = (a1, a2, a3). Programming and debugging affect

the stability of the program, µ1 = a1 + a2 about which there is a noisy

contractible signal S1 = µ1(a)+ ε1, where ε1 is some continuously distributed

random variable (linearity is not essential and only assumed for expository

reasons). Program sales can also be observed and depend on the program’s

stability, µ1, marketing effort, a3 and a random variable, ε2 : S2 = µ2 + ε2,

where µ2 = µ1 + a3.

Now consider different ways to split the three tasks {1, 2, 3}. Let there be

7A classical problem is that of implementing a social choice rule (see e.g. Fudenberg

and Tirole, 1991, Chapter 7.1). Mookherjee (2006) provides an excellent survey on or-

ganizational structures in hidden information models, in particular on the question when

decisions should be decentralized. Alonso and Matouschek (2008) are concerned with

limiting choice sets if agents are better informed; Raith (2008) examines how to provide

incentives to work to such agents.
8The example is inspired by Ratto and Schnedler (2008).
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a production department, l = P , that decides on programming effort and a

marketing department, l = M , that decides on marketing effort. The debug-

ging task may be located in either of the two departments. If the production

department decides on programming and debugging, (a1, a2), while the mar-

keting department only decides on marketing, a3, this is represented by the

partition: {{1, 2}, {3}}. Conversely, if the production department decides on

a1, while the marketing department debugs and markets, (a2, a3), the task

partition is {{1}, {2, 3}}. This difference in partitioning tasks turns out to

be crucial for implementability.

In order to complete the model, assume that each department l incurs

costs of 1
2
a2
i for every task i to which it is assigned, enjoys rewards rl, is risk-

neutral and that its preferences can be represented with the utility function:

ul(w, a) = rl − 1
2
a2
i .

Before turning to implementability of generic activity choice vectors, let

us examine when a specific vector å = (̊a1, å2, å3) can be induced using

rewards to agent l, which are linear in the signal: rl(s1, s2) = rl0+rl1s1+rl2s2.9

Given linear contracts, both departments’ utility functions are concave in

their choices, so that first-order conditions are necessary and sufficient for

their optimal choices. Consider the task partition {{1, 2}, {3}}. Then, the

production department’s first-order conditions are the following:

(rP1 , r
P
2 )D(a1,a2)µ(a) = D(a1,a2)c(a),

where the entry in column i and row j of matrix D(a1,a2)µ(a) stands for the

marginal effect of the i-th task on the j-th signal, and D(a1,a2)c(a) = ( ∂c
∂a1
, ∂c
∂a2

)

are the marginal costs of programming and debugging. In other words, the

9Corollary 1 later ensures that imposing linearity is without loss of generality.

9



production department can be induced to choose activity åP = (̊a1, å2), if

and only if some linear combination of the marginal effect of activity choices

on signals, D(a1,a2)µ, equals that on costs, D(a1,a2)c . Similar characteriza-

tions have been put forward by Feltham and Xie (1994) and Corts (2007).10

Observe that the two marginal effects that appear in the characterization

reflect two very different dimensions: changes in the signal parameter con-

cern the information technology, while changes in costs come from agents’

preferences. One may suspect that this observation is due to linear signals,

contracts, and other specific assumptions imposed in the example (as well as

in the literature). The general analysis later shows, however, that all that is

required is a certain separability of the utility and signal functions.

Now turn to any generic activity a = (a1, a2, a3) and suppose that de-

bugging is located in the production department {{1, 2}, {3}}. Inserting the

marginal effects in the necessary conditions yields:

(rP1 , r
P
2 )

 1 1

1 1

 = (a1, a2) or a1 = rP1 + rP2 = a2.

Hence, programming and debugging effort must be the same for an activity

choice vector to be implemented; generic activity choices cannot be induced

(the set {a|a1 = a2} is not dense in R2). If there are benefits from focusing

on programming rather than debugging, e.g., because better programmed

software is easier to maintain or adapt at a later stage, these benefits cannot

be reaped.

10Feltham and Xie (1994) observe that an activity choice is implementable if and only

if ‘it is spanned by the set of performance measure coefficients’—see their Appendix B.

Corts (2007) notes finds that optimal linear contracts induce first-best efforts whenever

signals ‘span the [agent’s] set of tasks’ (see his Proposition 6).
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Alternatively, consider assigning debugging to the marketing department:

{{1}, {2, 3}}. Then, the first-order condition for the production department

is r1
1 = a1 and there is no restriction on which programming effort can be in-

duced. For the marketing department, an activity choice can be implemented

if (and only if) it meets the following conditions:

(rM1 , r
M
2 )

 1 1

1 0

 = (a2, a3) or a2 = rM1 + rM2 and rM1 = a3.

An arbitrary activity vector (a2, a3) can be induced by setting rM1 = a3 and

rM2 = a2−a3. Hence, any generic activity a = (a1, a2, a3) can be induced when

the marketing department decides on debugging. If there are benefits from

focusing on programming, they can be realized with this task assignment and

agency costs are lower.

Why can generic activity choices only be induced when debugging is as-

signed to the marketing but not to the production department? One feature

that distinguishes the two task assignments is the departments’ leeway to

generate observable signals. When the production department carries out

debugging, it has several ways to generate the same distribution of signals.

For example, given that the marketing department chooses a3 = 1, the pro-

duction department can produce the parameter vector (µ1, µ2) = (2, 3) =

(a1 +a2, a1 +a2 +1) either by focusing on programming (a1, a2) = (2, 0) or by

engaging in both programming and debugging (a1, a2) = (1, 1). In contrast,

departments have no choice on how to generate signals when the marketing

department carries out debugging. Their activity choices are (conditionally)

identified. Given (µ1, µ2) and (a2, a3), the production department’s choice

must be a1 = µ1 − a2. Conversely, given (µ1, µ2) and a1, the marketing de-

partment’s choices have to be a2 = µ1−a1 and a3 = µ2−µ1. How conditional
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identification relates to seemingly similar notions in the literature on part-

nerships as well as to the concept of sufficient statistics is discussed after it

is properly defined in Section 3.

Intuitively, conditional identification and implementability are linked be-

cause it is easier to provide incentives for an activity if this activity can be

inferred from signals. Formally, they are related by the rank of agent l’s

marginal effect matrix, Dalµ(a). On the one hand, agent l’s activity choice,

al, can be inferred from µ = (µ1, µ2) if and only if µ is invertible in al,

which (by the linearity of µ) is the case whenever the marginal effect ma-

trix, Dalµ(a), has full rank. On the other hand, a generic activity choice

vector a can be induced if and only if there is a linear combination (rl1, r
l
2) of

the columns of Dalµ(a) that equal marginal costs, which again holds when-

ever Dalµ(a) has full rank. Appropriately adjusted, the relationship between

identifiability and ‘signal independence’ (as measured by the rank of the

marginal effect matrix) generalizes to signals that are not linear in activity

choices (Proposition 2). The respective result can then be used to establish

the fundamental link between implementing generic activities and conditional

identification (Theorem 1).

The insights from this section on implementability and identification do

not rely on the rather specific assumptions made; they are valid for a more

general framework which is presented in the following section.

3 General Framework

This section introduces a general framework and respective definitions to dis-

cuss implementability and identification.
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Activity and partition. Take a generic non-contractible activity that should

be implemented for some exogenous reason. The activity involves n relevant

dimensions,11 i ∈ N := {1, . . . , n}, for each of which there is a choice to be

made a = (a1, . . . , an), where a is from some open and convex set A ⊆ Rn. As

customary, dimensions are called tasks. In the software example, the activity

has three dimensions and the set of tasks is N = {1, 2, 3}.

Let P be some partition (disjoint decomposition) of the set of tasks N

and label the elements of P by l = 1, . . . ,m. These elements, N l ∈ P , rep-

resent the set of tasks for which the choices {ai}i∈N l are determined by the

same agent l. For example with the finest partition P0 := {{1}, {2}, {3}},

there are three agents, where the first programs, the second debugs, and the

third markets the software. Denote agent l’s choice for each of his tasks,

i = 1, . . . , |N l|, by the 1 × |N l| vector al. For example, the activity choice

vector by the marketing department given partition {{1}, {2, 3}} would be

aM = (a2, a3). Observe that tasks can always be re-labeled such that the first

|N l| tasks belong to agent l: a = (al, a−l), where a−l are the choices by other

agents.

Agents’ utility. Agent l incurs (strictly convex) costs cl(a) from activity a:

cl : A → R. On the other hand, the agent can be rewarded in some form,

which for simplicity’s sake, is taken to be monetary. Denote any rewards to

agent l by rl. Overall, agent l’s utility strictly increases in rewards rl and

decreases in costs: ul(rl, cl). Agent l’s utility outside the relationship with

11Dimensions that are irrelevant, e.g., because they do not affect the mechanism de-

signer’s utility are excluded.
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the principal is denoted by ul.

The functional form of the utility allows for the effect of overall costs

to change with wealth, which is typically assumed away in moral-hazard

models.12 However, it implies that rewards and costs exhibit a certain sepa-

rability. In particular, costs at task i cannot change in relation to those at

task i′ when the agent becomes poorer or richer.

In order to ensure that agent l’s problem has an inner solution that can

be found using standard calculus, assume that ul is differentiable and jointly

concave in rl and cl. Since any desired marginal effect of the activity on

the utility can be modeled by adjusting cl, it is without loss of generality to

assume that the marginal effect of costs on utility is bounded: 0 > ∂ul

∂cl
≥ −1.

The framework allows costs, number, and identity of agents to change

with the task partition. While any activity choice can trivially be imple-

mented by finding an agent who likes that choice; this method does not

work generically—unless agents are indifferent with respect to their behav-

ior, which is ruled out by the assumption that costs be strictly convex.

Signal structure. The signal structure follows the tradition of Spence and

Zeckhauser (1971) as well as Ross (1973) in using a state-space represen-

tation. Each signal j, with j = 1, . . . , k, is a (non-constant) function of a

one-dimensional parameter µj that represents the systematic effect of agents’

activity and a continuously distributed real-valued random variable εj that

12For exceptions, see Mookherjee (1997), Thiele and Wambach (1999), Schnedler (2011).
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is beyond agents’ control:

Sj : R2 → R

(µj, ej) 7→ Sj(µj, ej),

where ej is a realization of εj. The parameter µj itself is a function of the

activity choice vector a:

µj : Rn → R

a 7→ µj(a).

The functional form of signals requires that the effect under control of agents,

µj, can be separated from the effect beyond their control, εj. This assumption

is, of course, no restriction as long as the activity itself is one-dimensional

(n = 1) as in Spence and Zeckhauser (1971) and Ross (1973); respective

models can simply be embedded by defining µ(a) = a for all a ∈ R. In

most moral-hazard models with multi-dimensional activities (n > 1), the as-

sumption is fulfilled because there is no interaction between randomness and

individual task choices. An interesting exception is the specific knowledge

model by Raith (2008), where the relative marginal effect of choices at two

tasks varies randomly.

For state-space representations, signals are typically assumed to be con-

cave in activity choices for any state (see e.g. Conlon, 2009). In line with

this assumption, let Sj be concave in µj for almost all ej and µj be concave

in a, so that Sj is concave in a.

The random variables Sj(µj, εj) may be continuously distributed with

density, fj(sj, µj), discretely distributed with probability function, pj(sj, µj),
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or some mixture of both.13 In order to use marginal arguments later, assume

that density and probability function are differentiable in µj and that the

support of Sj is constant in µj. Moreover, suppose that Sj(µj, εj) stochasti-

cally increases in µj, which is not too restrictive given that the relationship

between µj may increase or decrease in the choice at task i, ai.

Incentives. Agents’ utility and the signal structure are assumed to be com-

mon knowledge. The mechanism designer can influence agents’ behavior by

tying rewards to signals—either formally or in a self-enforcing manner. For

simplicity, assume that signals are verifiable and rl is a real-valued (mea-

surable) function rl : Rk → R, that assigns a reward to agent l, rl(s), for

each realization s = (s1, . . . , sk) of the random vector S = (S1, . . . , Sk).
14 For

example, rewards may be linear in realizations: rl(s) = rl0 +rl1s1 + . . .+rlksk.

Another example would be bonuses that are paid when a certain threshold

is reached.

Derivatives. In order to summarize agents’ marginal effects, the following

notation is used. Daµ(a) stands for the matrix with a row for each of the

k signals and a column for each of the n tasks; the (j, i)-th entry of this

matrix describes the effect of the i-th task in the activity vector, ai, on the

j-th signal, Sj given a:
∂Sj
∂ai
. Dalµ(a) is the respective marginal effect matrix

for the activity choice vector under control of agent l, al. Dac
l(a) is a row

13Since any distribution can be decomposed into an absolutely continuous, discrete and

singular measure by Lebesgue’s decomposition theorem, the assumption essentially means

that there is no singular component.
14Alternatively, the framework could be formulated in a repeated game setting similar

to Fudenberg, Levine, and Maskin (1994).

16



Figure 1: Sequence of Events.

vector with an entry for each of the n tasks, where the i-th entry describes

the effect of the i-th task on costs: ∂cl

∂ai
and Dalc

l(a) the respective row vector

for the |N l| tasks under control by agent l.

Figure 1 gives an overview of the main elements of the model and the

sequence of events. After task assignment, the structure is that of a standard

moral hazard problem with one or many agents—depending on the task

assignment. Once a contract is signed, agents l = 1, . . . ,m play a game,

the payoffs of which result from rewards being attached to signals. The

payoffs hence only depend on activity choices via µ(a) and each agent’s cl(a)

but not on the order of moves by the agents. An activity choice vector is

implementable if it forms a Nash-equilibrium in the agents’ game.

Definition 1 (Implementability). Given a signal structure S and a parti-

tion P, a specific activity choice å = (̊a1, . . . , ån) is implementable if there

are reward functions rl for each agent l such that the activity is a Nash

equilibrium. Let I be the (possibly empty) set of all implementable activity

choices. If I is dense in A, activity choices are generically implementable.

Although inducing an activity is not an inference problem, one can ask

whether it is possible to recover activity choices from the signal distribution.

As signals stochastically increase in the parameter vector, µ(a), the latter

uniquely determines the distribution and can be inferred from sufficiently

many (possibly infinitely many) signal realizations. The question then boils
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down to whether activity choices can be deduced from the parameter vec-

tor µ(a).

Definition 2 (Identification). Given signal structure S and partition P,

the activity of agent l is (conditionally) identified if for any activity choices

by other agents, a−l, two distinct choices by agent l lead to different signal

distributions:

for all a−l and al 6= ãl : µ(al, a−l) 6= µ(ãl, a−l).

Agents’ activity is said to be identified given S and P, if it is identified given

S and P for all agents l = 1, . . . ,m. Otherwise, there is an identification

problem.

Identification imposes no restrictions on the interaction between different

tasks—neither in the agents’ cost function nor in the production of signals.

All that matters for identification is that there is an injective mapping from

each agent’s decision al to µ conditional on a−l. This distinguishes the concept

from similar concepts in the literature on partnerships—e.g., the concept of

pairwise identifiability by Fudenberg, Levine, and Maskin (1994). In this

literature, it is important to identify one agent who has not deviated from

some efficient activity choice, say a∗, (see e.g. Battaglini, 2006) and who can

thus act as a budget breaker by receiving any fines imposed on deviators.

Activities may well be conditionally identified while it is impossible to

find out who deviated. Reconsider the software example from Section 2 with

partition {{1}, {2, 3}} and suppose that the efficient activity is a∗ = (1, 1, 1)

and that the production department deviates by reducing programming ef-

fort a = (0, 1, 1). Given the deviation signal parameters are µ(0, 1, 1) =
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(a1 + a2, a1 + a2 + 13) = (1, 2). The same parameter values, however, may

also be generated by a deviation of the marketing department with respect

to debugging effort: a = (1, 0, 1). It is thus not possible to identify who devi-

ated given parameter values (1, 2). At the same time, agents’ activity choices

are conditionally identified—as seen in Section 2. Still, conditional iden-

tification is not a weaker concept. In partnership models, only a deviation

from a specific activity choice vector matters (the efficient one), whereas here

identification concerns the general capability to (conditionally) infer activity

choices from parameters.

Holmström (1979) famously suggested to assess the value of an additional

signal S2 by checking whether the original signal S1 is a sufficient statistic

for activity a. An additional signal S2 that is informative in the sufficient

statistic sense, however, does not necessarily help with conditionally identi-

fying activity choices. Consider a single agent who faces two tasks and two

signals, Sj(µj, εj) = µj + εj with µ1(a) = µ2(a) = a1 + a2 and let εj be an

independently standard normally distributed error term. The agent’s activ-

ity cannot be identified—irrespective of whether S1 or both signals are used.

On the other hand, signal S2 conditional on S1 is normally distributed with

mean a1 +a2 so that S1 is no sufficient statistic for S2 because its distribution

depends on activity choices. Signal S2 is hence informative about the activity

in Holmström’s sense but does not help with identification.15

15Observe that Holmström’s well-known sufficient statistic result is restricted to distri-

butions from the exponential class with rank one (Amershi and Hughes, 1989) and can

fail if activities are multi-dimensional (Holmström and Milgrom, 1991) or if income affects

marginal costs of effort (Schnedler, 2010). In contrast, results on identification derived

here are independent of the specific distribution, hold for single- and multi-dimensional

activities, and allow for interaction between effort and wealth.
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4 Implementability and Identification

The central aim of this section is to prove that implementability is limited if

and only if agents’ activity is not identified. For this proof, it is helpful to

first characterize which activities are implementable (Proposition 1). Given

this characterization, limited implementability can be traced back to the

rank of the marginal effect matrix Dalµ(a) (Corollary 2). On the other

hand, identification problems are also related to this rank (Proposition 2).

Combining both results yields that implementability is restricted if and only

if there is an identification problem.

Given some partition, signal structure and incentives, each agent l chooses

activity vector ål given the behavior of others, say å−l, such that it maximizes

his expected utility:

ål ∈ argmaxal∈AEε

[
ul
(
rl
(
S
(
µ(al, å−l), ε

))
, cl(al, å−l)

)]
. (1)

Exploiting that signal densities (or probability functions) are differentiable

in the parameter µj, the expected utility can be differentiated in the activity

vector—even if the reward function rl is not differentiable (by Lemma 1 in

Appendix B). Implementing a specific activity vector å as an inner maxi-

mizer then requires that the necessary first-order conditions hold and that

the 1 × |N l| vector, which describes the derivatives of the utility with re-

spect to agent l’s choice al is zero evaluated at the implemented activity ål:

d
dal

Eε

[
ul
(
rl
(
S
(
µ(al, å−l), ε

))
, cl(al, å−l)

)] ∣∣
al=ål

= (0, . . . , 0)′.

Recall that activities affect signals and utility only via µ and cl. As a

result, it becomes possible to separate marginal gains from losses and fur-

ther decompose both terms. Marginal gains occur because the activity vec-

tor affects the signal parameters, Dalµ(a), which in turn influence the ex-
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pected utility, DµEε

[
ul(rl(S(µ, ε)), cl)

]
. Marginal losses unfold because the

activity vector affects costs Dalc
l(a), which then decreases expected utility,

d
dcl

Eε

[
ul(rl(S(µ, ε)), cl)

]
. Using this decomposition, the necessary conditions

for implementing agent l’s activity vector ål given å−l are:

DµEε

[
ul(rl(S(µ, ε)), cl)

]
·Dalµ(a)

∣∣
a=å

= − d

dcl
Eε

[
ul(rl(S(µ, ε)), cl)

]
·Dalc

l(a)

∣∣∣∣
a=å

. (2)

The necessary conditions (2) must hold for all agents at activity choice å

for this choice to be implementable. Dividing by the marginal effect of costs

on the expected utility d
dcl

Eε

[
ul(rl(S(µ, ε)), cl)

]
yields that a vector å is only

implementable if for each agent some linear combination of his activities’

marginal effect on signals equals that on costs (a formal proof is given in

Lemma 2 in Appendix B). The advantage of this condition is that it is in-

dependent of the incentive scheme. Since it is derived from the first-order

conditions, it is necessary for implementability. More interestingly, the con-

dition is also sufficient. Once the condition is met, it is possible to find

rewards that implement the desired activity.

Proposition 1 (Implementable activities). Given signal structure S and

partition P, activity choice å can be implemented if and only if for each

agent, some linear combination of his activities’ marginal effect on signals

equal that on costs given å:

å ∈ I iff for all l there is some λl ∈ Rk with λl Dalµ(a)|a=å = Dalc
l(a)
∣∣
a=å

.

(3)

The idea of the proof is the following (the formal proof can be found with

all other proofs in Appendix A). If the desired activity is implementable
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and hence a Nash equilibrium, this choice must be optimal for each agent l,

which directly implies condition (3) (see Lemma 2 in Appendix B). The

proof that the condition is also sufficient is more involved. The intuition

is the following. Suppose that all agents other than agent l engage in the

desired activity and consider a linear reward scheme for this agent: rl(s) =

rl0 + rl1s1 + . . . + rlksk. With two assumptions from our model, which are

considered ‘completely standard’ by Conlon (2009), namely that signals be

concave in activities and agents’ utility be increasing and concave in rewards,

linearity of rewards implies that the first-order conditions are also sufficient.

The difficulty then lies in showing that given condition (3), one can find

weights rlj in the linear reward scheme such that the first-order conditions

are met for this scheme at the desired choice ål. The difficulty arises from the

fact that adjusting weights may affect agent l’s marginal utility as he becomes

richer (or poorer). Potentially, agent l’s marginal utility from rewards may

even become negligible. This can be avoided by selecting a base wage r0

in dependence of rlj such that the agent’s participation constraint binds.

Then, his expected utility is constant and his marginal utility from rewards

is bounded away from zero (see Lemma 3). After having established that

condition (3) allows us to find weights in a linear scheme for which the

first-order conditions hold (at the desired activity) and that these conditions

are also sufficient, it follows that agent l has no incentive to deviate from

the desired activity as long as no other agent does so. Since the argument

applies to an arbitrary agent l, it is possible to find a respective (linear)

reward scheme for any agent such that the desired activity becomes a Nash

equilibrium.

Proposition 1 offers a general characterization of implementable activities
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for a given task partition amongst several agents. It emphasizes the funda-

mentals that matter for implementability: the marginal effects of activities

on signals, Dalµ(a), and costs, Dalc
l(a). Apart from the assumption that

the agents’ problems be concave, very little restrictions are placed on µ(a)

and cl(a). It is noteworthy that condition (3) is otherwise independent of

variables that are usually considered important like the agents’ degree of risk

aversion or the substitutability of effort in signals or costs.

The characterization of implementable activities (3) closely relates to

first-order conditions. Often first-order conditions are used to replace the

incentive constraints when finding optimal incentives. This first-order ap-

proach has been the object of a debate for nearly four decades.16 In view

of this debate, it should be stressed that the analysis underpinning Propo-

sition 1 and hence the subsequent results, does not rely on this approach.

Implementable activities can be and are characterized here without deter-

mining optimal incentives; consequently, it is not necessary to employ the

first-order approach. Although the aim here is implementability and not op-

timality, results can be used to better understand second-best contracts and

assignments—for examples, see Section 6.3 or 6.5.

Since the proof uses linear rewards to show that condition (3) suffices for

implementation, we immediately obtain the following corollary.

Corollary 1. Any activity å that can be implemented can also be imple-

mented with linear rewards.

The corollary shows that imposing linearity when trying to find out which

activities are implementable is without loss of generality. It thus justifies

16This debate started with the insightful work by Mirrlees (1974) and does probably

not end with the illuminating analysis by Conlon (2009).
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the approach by Feltham and Xie (1994) and Corts (2007) of restricting

attention to linear rewards when examining implementation. This contrasts

with the highly restrictive nature of linear rewards when determining optimal

contracts (see Mirrlees, 1974).

Proposition 1 is helpful from a technical point of view because it reduces

the question of implementability to that of the existence of a solution to a

linear equation system. This means that standard results from linear algebra

can be used to check for implementability. Take, for example, the result that

a linear equation system has a solution if the rank of the extended coefficient

matrix is equal to the rank of the coefficient matrix itself. Applying this

result to Proposition 1 yields the following corollary.

Corollary 2 (Rank characterization for implementable activities). Given

signal structure S and partition P, activity å is implementable if and only if

for all agents, marginal costs are in the row-space of the matrix describing

their marginal effects at å on signals:

For all l : rank (Dalµ(a))

∣∣∣∣
a=å

= rank

 Dalµ(a)

Dalc
l(a)

∣∣∣∣
a=å

. (4)

This characterization of implementable activities is useful because it ex-

presses implementability using the rank of the marginal effect matrix, Dalµ(a).

Fudenberg, Levine, and Maskin (1994) provide a necessary condition for im-

plementability that is also based on ranks albeit in a different setting. Their

individual rank condition follows from keeping an agent in a repeated game

indifferent between choosing a desired activity and deviating. As signal real-

izations and the set of choices are finite, distributions induced by a specific

choice can be described by a vector of probabilities. Individual full rank
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means that the probability vectors for different activity choices differ. There

is hence a direct link between the rank of the matrix containing the prob-

ability distributions for different choices and identification. The following

result asserts that a similar link can be established when the activity space

is continuous so that the matrix describes marginal effects on signals rather

than probabilities.

Proposition 2 (Identification and signal independence). Given signal struc-

ture S and partition P, the activity is identified for all agents if and only if

all agents face at least as many independent signals as tasks:

For all l and å : rank (Dalµ(a))
∣∣
a=å
≥ |N l|.

The intuition for the result is the following. Suppose there are less inde-

pendent signals than tasks for some agent or more formally that the rank

of the marginal effect matrix is not large enough for some vector å. Then,

there is a direction in which a change of some agent’s decision does not affect

the parameter vector. Choices along this direction can hence not be identi-

fied and the mechanism designer faces an identification problem. Conversely,

having sufficiently many independent signals, i.e., a sufficiently large rank

of the marginal effect matrix, means that any direction leads to a different

parameter vector, so that the agent’s activity affects parameter values and

is identified.17

The proposition clarifies in what sense the richness of the same signal

structure S can vary. It may or may not be conditionally identified, depend-

ing on the task assignment. The proposition can also be re-interpreted as a

17The rank condition is somewhat weaker than requiring invertibility of the agents’

marginal effect matrix. Invertibility would in addition mean that the matrix has to be

quadratic, i.e., the number of signals would have to be the same as the number of tasks.
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characterization of task assignments that are free from identification prob-

lems. In the next section, this interpretation is used to derive necessary and

sufficient conditions for task assignments to solve identification problems.

Using that implementation and identification depend on the rank of the

same matrix yields the following central result.

Theorem 1 (Implementability and identification). Given signal structure S

and partition P, any activity is implementable if and only if (all) agents’

activity is identified.

The logic of the proof is the following. Whenever there is no identification

problem, there are at least as many independent signals as tasks for all agents

and activities by Proposition 2. The central step in the proof is to show that

this is fulfilled whenever the rank condition (4) from Corollary 2 holds.

The proof is indirectly based on Proposition 1, which uses linear rewards.

Linear rewards are problematic in the canonical hidden-action model with

limited liability and a risk-neutral agent, i.e., ul(rl, cl) = rl − cl with the

additional restriction rl ≥ 0, because linearity implies that the agent may

lose money for some (possibly rare) signal realizations.18 Still, identification

also leads to implementability in this setting. Since activities are identified,

there are signal realizations which are most likely when each agent selects

the desired choice; tying a finite bonus to these realizations then induces

the desired activity (see Proposition 5 in Appendix C). The message of the

theorem thus also holds in a somewhat different framework.19

18For a textbook treatment see, for example, Macho-Stadler and Perez-Castrillo (1997).
19The proof employs direct utility comparisons rather than first-order conditions and

hence also works for finite sets of activity choices. On the other hand, it requires risk-

neutral agents.
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The theorem pins down the signal imperfection that hampers imple-

mentability: the lack of identification. Interestingly, it is only the systematic

effect of the activity on signals that matters and not the distribution of the

error terms. The theorem also formally establishes how task assignment can

affect implementability: by (conditionally) identifying activity choices.

The theorem may suggest that restricted implementability is essentially a

problem of inferring activities from signal realizations similar to identification

problems in econometrics. The analogy, however, is limited. If the activity

of agent l is identified according to Definition 2, an econometrician still has

to know the choices of the other other agents, a−l, and to observe a sufficient

number realizations s of the signal vector S (possibly infinitely many) before

activity vector al can be deduced. In contrast, knowing the choices a−l is

not required and a single realization s of S suffices in order to induce generic

activity choices. The reason is that conditioning rewards on this realization

provides the correct marginal gains and hence ex-ante incentives for agents to

choose the activity a. Given these incentives, the mechanism designer knows

that agents behave in the desired manner and there is no need to deduce

activity choices from signals.

5 Identification by Task Assignment

The previous section has shown that implementability is limited whenever

there are identification problems. Moreover, Proposition 2 introduced a sim-

ple characterization for task assignments that are free of such problems.

Building on this proposition, the present section provides general conditions

under which task assignment can overcome identification problems (Corol-
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lary 3 and 4) and more specific conditions on the respective number of agents,

independent signals, and tasks (Proposition 3 and 4). Before linking multi-

tasking to the question when task assignment can overcome limited imple-

mentability, let us single out a specific class of identification problems.

Definition 3 (Identification problem caused by multi-tasking). Suppose there

is an identification problem given signal structure S and some partition P.

Then, this identification problem is caused by multi-tasking if there is no

identification problem given signal structure S and the finest partition, in

which no agent carries out more than one task: {{1}, . . . , {n}}.

As an example for an identification problem caused by multi-tasking, return

to Section 2. Assigning debugging and programming to the production de-

partment led to an identification problem. If programming, debugging, and

marketing are be carried out by three different units, this identification prob-

lem disappears. It is hence caused by multi-tasking. Multi-tasking can thus

cause identification problems and thereby restrict the set of implementable

activity choices and increase agency costs. This type of multi-tasking problem

is very distinct from that examined by Holmström and Milgrom (1991)—an

issue to which we return in Section 6.6.

If multi-tasking causes an identification problem, this problem can by

definition be solved through task assignment—simply, by assigning each task

to a different agent. Conversely, an identification problem that can be solved

through some task assignment can also be alleviated with the finest partition.

The intuitive reason is that the finest partition leaves agents less scope to

generate signals than any other partition (a formal proof can be found in

Appendix A). The following corollary sums up the argument.
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Corollary 3 (Identification problems, task assignment, and multi-tasking).

Given signal structure S, identification problems can be solved by some task

assignment P if and only if they are caused by multi-tasking.

With this corollary, it becomes simple to determine whether identification by

task assignment is possible: all that needs to be checked is whether the finest

partition leads to an identification problem or not. If the finest partition is

used and each task is carried out by a different agent, identification boils down

to the parameter vector being affected whenever the agent at task i changes

his choice ai, while the other agents’ behavior is fixed. This observation

allows us to derive a simple characterization of signal structures for which

task assignment can overcome identification problems.

Corollary 4 (Identification by task assignment). Given signal structure S,

identification problems can be avoided by some task assignment P if and only

if different choices at any task i lead to different signal distributions (holding

constant the choices at all other tasks), or formally,

for all a = (a1, . . . , an), i ∈ {1, . . . , n}, and ãi with ãi 6= ai :

µ(a1, . . . , ãi, . . . , an) 6= µ(a1, . . . , ai, . . . , an).

Re-phrasing the corollary, task assignment is a viable identification strategy

if the parameter vector is an injective function of each decision ai for given

constant choices at all other tasks. Notice that conditional injectivity is

sufficient. In particular, the parameter vector, µ, does not have to be injective

in the whole activity vector, a. As seen in the software example, it may be

impossible to infer behavior from signals and still task assignment overcomes

the identification problem.
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The task assignment that avoids identification problems may be expensive

in the sense that it requires a lot of personnel. How many agents are nec-

essary? How many are sufficient? The remainder of the section attempts to

answer these questions for a signal structure that in principle allows for iden-

tification, i.e., behavior would be identified with the finest partition; there

are simply not enough agents.

Proposition 3 (Necessary condition). Given signal structure S, identifi-

cation problems can only be alleviated by partitions for which the average

number of tasks per agent is at most the overall number of independent sig-

nals k̃:
n

m
≤ k̃,

where k̃ := mina rank(Daµ(a)).

The number of independent signals for some agent l can at most be the

overall number of independent signals, k̃. If an agent is assigned more tasks

than the overall number of independent signals, this leads to an identifica-

tion problem (by Proposition 2). The maximal number of tasks that can

possibly be assigned to each agent is thus k̃. With m agents, the maximal

possible number of tasks, n, such that agents’ behavior is still identified (and

implementability is ensured) is hence m · k̃.

Corts (2007) observes that the number of signals must be at least as large

as the average number of tasks: k ≥ n/m.20 Since there are always at least as

20Corts’ condition originally concerns the question when the optimal linear contract

implements the first-best with risk-neutral agents under generic production functions and

not when task assignment identifies activities. However, the rank condition in his Propo-

sition 6 is linked to identification by Proposition 2 in the present paper.
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many signals as independent signals, k ≥ k̃, the proposition tightens Corts’

boundary.

The condition in the proposition resembles that of Battaglini (2006) for

implementing efficient production in partnerships. While Battaglini’s condi-

tion is sufficient for his problem, the condition is not sufficient in the present

context. As an example, take two agents and the following marginal effect

matrix, which could be seen as an extension of the software problem with an

additional activity choice a4 that improves stability:

Da(µ(a)) =

 1 1 0 1

1 1 1 1

 .

There are two independent signals, i.e., the minimum rank of the matrix is

two, k̃ = 2, because the two signal coefficient vectors in the rows are linearly

independent. Given the two departments, the average number of tasks per

department is likewise two, n/m = 4/2 = 2 and the condition in the propo-

sition is met: k̃ = 2 = 4/2 = n/m. Still, the identification problem cannot

be eliminated by any partition among the two departments. Take the three

tasks affecting stability: {1, 2, 4}. However these tasks are assigned, at least

two of them have to be carried out by the same department l. But for this

department, signals are not independent, rank(Dalµ(a)) = 1. It thus faces

more tasks than independent signals and there is an identification problem

(by Proposition 2). In summary, the condition that the average number of

tasks per agent must be larger than the total number of independent signals

is necessary but not sufficient. A sufficient condition is given in the next

result.

Proposition 4 (Sufficient condition). Given signal structure S and an iden-

tification problem that is caused by multi-tasking, the identification problem
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can be alleviated by some partition P if the number of agents and total number

of independent signals exceeds the number of tasks

m+ k̃ > n,

where k̃ := mina rank(Daµ(a)).

The intuition behind this result is the following. With a total number of k̃

independent signals, k̃ tasks can be carried out by one agent without causing

an identification problem. To guarantee that the remaining n − k̃ tasks are

not resulting in such a problem, they have to be assigned to n − k̃ agents.

Thus, n− k̃ + 1 agents are sufficient to avoid the identification problem.

The boundary is tight: with one agent less, i.e., m = n− k̃, it is no longer

certain that identification can be achieved. We have just seen an example

with two agents, four tasks and an overall number of two independent signals,

so that m = n− k̃, in which no partition conditionally identified behavior.

The condition, m > n−k̃, is sufficient but not necessary. Take two agents,

m = 2, and the following marginal effect matrix:

Da(µ(a)) =

 1 0 1 0

0 1 0 1

 .

The two signals are hence independent, k = k̃ = 2. Accordingly m + k̃ =

2+2 = 4, and thus m+k̃ = 2+2 = 4 = n and the condition is violated. With

partition {{1, 2}, {3, 4}}, each agent has two independent signals and two

tasks. Hence, activities are identified (by Proposition 2) although m = n− k̃.
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6 Applications

This part exploits the generality of the framework and applies the results

to established and new moral-hazard models. Section 6.1 revisits models

that feature improved implementability as a result of task assignment and

explains why assigning tasks differently leads to identification (and hence

unlimited implementability) in these models. Section 6.2 illustrates with a

short example that a shift in accountability is not essential for augmented

implementability. Section 6.3 explains optimal task bundling by a trade-

off between gains from more control (augmented implementability) and cost

complementarities. Section 6.4 returns to the early moral-hazard literature

and points out that implementability is typically unrestricted under its as-

sumptions. Section 6.5 presents a single-task model with an identification

problem and shows how biased signals can overcome this problem. Sec-

tion 6.6 argues that Holmstrom and Milgrom’s famous multi-tasking article

features no implementability problems due to multi-tasking. Finally, Sec-

tion 6.7 takes a common assumption from the recent multi-tasking literature

(linearity of signals) and shows that under this assumption, task assignment

can generically overcome implementability problems.

6.1 Advocates, Specialists, and Joint Accountability

Three contributions that particularly emphasize the beneficial effects of task

assignment on implementation are the advocates model by Dewatripont and

Tirole (1999), the specialization model by Ratto and Schnedler (2008), and

the accountability model by Corts (2007). While these models differ in var-

ious dimensions (e.g., number and character of tasks, number of signals,
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flexibility of number of agents), the principle that underpins the result is the

same: a different task assignment leads to identification.

All contributions start out with an organization structure (single investi-

gator, single worker, individual accountability) that is plagued by an identi-

fication problem, which implies limited implementability. Moreover, signals

are injective in activity choices at all tasks, so that these identification prob-

lems are caused by multi-tasking and can be overcome by task assignment (by

Corollaries 3and 4). The proposed alternative task assignments (advocacy,

specialization, joint accountability) exploit this opportunity by increasing

the number of independent signals relative to the number of tasks, so that

activity choices become identified (by Proposition 2), implementability is no

longer limited (by Theorem 1), and agency costs are lower.

6.2 Identification Without Shifts in Accountability

Identification in the advocates, specialization and accountability model in-

volves moving from a situation in which agents’ payoffs are only affected by

their own action (individual accountability) and randomness to one in which

they also depend on other agents’ decisions (team or joint accountability).21

This may suggest that a shift in the type of accountability is at the heart of

implementability restrictions and possibly related to identification. Moving

from individual to joint accountability, however, is not crucial for identifica-

tion (and hence neither for augmented implementability).

In the following example, identification by task assignment is achieved al-

21While joint accountability has a smack of a free-rider problem, this problem is absent

from Dewatripont and Tirole (1999), Corts (2007), and the present paper, because the

mechanism designer acts as a budget breaker as in Holmström (1982).
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though agents influence each others payoffs before and after tasks are newly

assigned. Return to the software model from Section 2, but suppose now that

both agents dislike risky payments. In addition, assume that uncertainty in

sales ε2, is independent from the uncertainty about the program’s stability,

ε1. As a departure point, take the assignment in which the production de-

partment debugs, {{1, 2}, {3}}, and which was plagued by an identification

problem. Whatever is induced given this task partition can also be induced

by exposing the risk-averse agents to less uncertainty if stability and sales

signal are both used. The optimal contracts for both agents hence depend

on both signals and thus on the other agent’s behavior; agents are jointly

accountable. We have seen that the identification problem disappears if the

marketing department debugs {{1}, {2, 3}}. Again, it is optimal to pay both

departments according to both signals: the production department to reduce

noise and the marketing department to obtain the desired activity choices.

Departments are thus jointly accountable under both partitions, but only

one of them yields identification and unlimited implementability.

6.3 More Control versus Exploiting Complementarity

In the typical principal-agent setup, identification is, of course, not a goal

in its own right but an important and sometimes overlooked means of min-

imizing agency costs as it may improve the principal’s control of agents’

opportunistic behavior. Some models trade-off this benefit of identification

(without explicitly recognizing its origins) against insurance costs (Corts,

2007) or rents induced by minimum wages (Kragl and Schöttner, 2011). An-

other important reason not to separate tasks are complementarities, either

for technical reasons or because agents like variety. This section illustrates
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how task assignment affects identification and hence agency costs in a sim-

ple example. The example is a metaphor for a more fundamental trade-off

between better control on the one hand and exploiting complementarity on

the other hand.

Consider a two-task variation of the software example (n = 2) that only

involves programming and debugging (a1, a2). Suppose the two tasks exhibit

complementarities and that the gains of complementarities only manifest

if they are carried out by the same agent. Let costs amount to cB(a) =

a21+a22−γa1a2
2

if tasks are bundled and to cj(a) =
a2j
2

if each task j = 1, 2 is

carried out by a different agent j, so that γ ∈ [0, 2) describes the extent of

complementarities. Standardize the departments’ outside option to zero and

let agents be risk-neutral to abstract from insurance issues. The only observ-

able variable is the software’s stability, µ(a) = a1 + a2. There is a principal

(she) who is affected by agents’ behavior and who is not only interested in

stability but benefits from a focus on programing: uP (a) = µ(a) + δa1 − r,

where r stands for any rewards given to agents and δ ≥ 0 captures the de-

gree to which the principal prefers a focus on programming. The parameter

δ thus describes the principal’s desire to control agents’ behavior.

The following analysis proceeds in three steps. First, an optimal contract

is determined under task bundling and the generated surplus is computed.

Second, the same is done for task separation. Finally, surpluses are compared

to show that bundling is optimal whenever the principal wants to influence

the agent’s decision (large δ) and gains from complementarity are limited

(small γ). In the analysis, attention is restricted to linear contracts. This is

without loss of generality because the only friction in the model is that some

activities may not be implementable; as seen in Corollary 1, linear contracts
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suffice to overcome this friction.

Task bundling, {{1, 2}}, leads to an identification problem because the

first agent faces two tasks but only one signal (by Proposition 2) and imple-

mentability is restricted (by Theorem 1). The principal’s program is:

max
r0,r1

(1 + δ)a1 + a2 − r0 − r1 · (a1 + a2)

such that (a1, a2) ∈ arg max
ã
r0 + r1 · (ã1 + ã2)− cB(ã) (IC)

and r0 + r1 · (a1 + a2)− cB(a) = 0. (PC)

The incentive constraint (IC) boils down to the implementability condition

from Proposition 1:

r1 ·D(a1,a2)µ(a) = D(a1,a2)c
B(a) or r1 · (1, 1) = (a1 −

γ

2
a2, a2 −

γ

2
a1).

Eliminating r1 in this equation system yields that only identical choices on

both tasks are implementable, i.e., a1 = a2. Plugging this condition as well

as the participation constraint (PC) into the maximization program yields

max
a1

(1 + δ)a1 + a1 −
a2

1 + a2
1 − γa1a1

2
. (5)

From this, the optimal activity choices under task bundling, (aB
1 , a

B
2 , can be

computed to be aB
1 = aB

2 = 2+δ
2−γ . The respective surplus is

πB :=
1

2

(2 + δ)2

(2− γ)
.

Task separation, {{1}, {2}}, leads to conditionally identified activities be-

cause each agent faces as many independent signals as tasks (by Proposi-

tion 2) and implementability is unrestricted (by Theorem 1). Plugging in

the participation constraints, we get the following maximization program:

max
a1,a2

(1 + δ)a1 + a2 −
a2

1

2
− a2

2

2
(6)
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This program leads to the optimal activity choices: aS
1 = (1 + δ) and aS

2 = 1.

The respective surplus is:

πS :=
(1 + δ)2

2
+

1

2
.

The analysis implies that task separation is optimal if and only if

πS > πB or
(1 + δ)2 + 1

(2 + δ)2
>

1

2− γ
.

This result reflects the basic trade-off between more control and exploiting

gains of complementarity: The left-hand side increases in δ and the right-

hand side in γ, which yields the testable prediction that task separation is

more likely if control is important (δ is large) and complementarities are

small (γ small).

6.4 Implementability in Single-Task Models

In the pioneering works on the moral-hazard model by Holmström (1979,

1982) and Shavell (1979) and many ensuing contributions, the agent faces

only one decision: how much effort to exert: a ∈ R. The focus of this litera-

ture is not on the failure to induce agents to engage in desired behavior—for

a vivid account of such failures from the same time, see Kerr (1975)—but

on the trade-off between incentives and insurance.22 In fact, restrictions on

implementability cannot be meaningfully discussed in most single-task moral-

hazard models because they typically assume that observable output stochas-

tically increases in effort. This means that the signal is an injective function

22See Prendergast (1999, 2002) for a critical empirical overview on the evidence con-

cerning this trade-off.
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of the agent’s effort choice, so that any identification problem is due to multi-

tasking (Corollary 4). Since there is by definition only one task, the agent’s

activity is identified and implementability unrestricted (Theorem 1).23 The

next section presents a single-task model with restricted implementability.

6.5 Identification with Biased Reports

In many circumstances, incentives are based on subjective evaluations, e.g.,

written reports. The expert writing the report rarely assesses behavior in

exactly that way which is required to induce a desired activity choice; signals

may be biased. This section shows that a second even more biased report

can then be valuable.

In order to support this claim, consider a risk-neutral agent whose activ-

ity choice, a ∈ R, affects the probability of report j being favorable (Sj = 1)

or not (Sj = 0) with j = 1, 2. More specifically, assume that the activity

is evaluated against a benchmark, αj, and that the probability of a favor-

able report, P (Sj = 1|µj), decrease in the distance µj between the activity

choice, a, and this benchmark: µj(a) = (a − αj)
2. For simplicity, let the

principal’s benefit from the activity be the activity itself and the agent’s cost

be quadratic. Then, the joint surplus amounts to: a− c(a) = a− a2

2
, which is

maximized for a∗ = 1. An ideal signal would thus reveal by how far the agent

misses the first-best choice a∗ = 1. In order to represent the bias, let the

benchmarks be too low: 0 < α2 < α1 < 1. Which report will the principal

23The formal proof involves an additional step because the early moral-hazard literature

uses the so-called Mirrlees representation of the signal structure, which first has to be

transformed into state-space representation—for the details, how this can be achieved, see

Conlon (2009).
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use in an optimal contract and when is a second report valuable?

Figure 2: Using a biased signal with parameter µ1, the largest activity level

that can be induced is α1. By adding an even more biased signal with param-

eter µ2, agents’ behavior becomes identified and the first-best effort, a∗, can

be induced.

Each of the two signals alone is not injective in the activity choice—see

also Figure 6.5. For example, å := αj + 1 and ã := αj − 1 both lead to

µj = 1. With only one signal, the agent’s activity is thus not identified and

implementation is limited. Moreover, the problem is not due to multi-tasking

and task assignment offers no viable identification strategy. Activity choice å

can only be induced if some linear combination of the marginal effect on the

signal, λ, equals marginal costs: λ(−2(̊a − αj)) = å (by Proposition 1).

Solving for å yields: å(λ) =
αj
1
2λ

+1
. While the activity choice increases in λ,

it is bounded: limλ→∞ å(λ1) = αj. Factoring in the agent’s participation

constraint, the principal’s net gain equals the joint surplus: a− a2

2
. This net

gain strictly increases in a for a < αj < 1 and thus attains its supremum
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at a = αj. If the principal had to select one report, she would take the less

biased one and obtain a surplus that is arbitrarily close to

π1R := α1 −
α2

1

2
.

With two reports, the identification problem is solved. In order to see this,

consider the marginal effect matrix:

Daµ =

 −2(a− α1)

−2(a− α2)

 .

This matrix has a minimal rank of one because one of the two entries is always

different from zero (since α1 6= α2). Hence, a single agent with one task faces

one independent signal and his activity is identified (by Proposition 2). Any

activity can thus be implemented, in particular, the first-best choice, a∗ = 1.

The surplus with both reports thus amounts to:

π2R :=
1

2
.

Accordingly, the additional report has a value of at least

π2R − π1R =
1

2
− α1 +

α2
1

2
=

1

2
(1− α1)2.

This value is independent of α2 and strictly positive (as long as the first

report is biased). The second report thus adds value irrespective of its bias

and this value becomes larger, the larger the bias of the first report, i.e., the

smaller α1.

6.6 Identification in Holmström and Milgrom (1991)

Corts (2007) claims that in large parts of Holmström and Milgrom’s semi-

nal paper on multi-tasking (1991) are free from ‘multitask problem[s]’ once
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randomness is removed. This section clarifies, supports and extends Corts’

claim: Holmström and Milgrom’s article features no identification problem

caused by multi-tasking. At first glance, this observation seems to contra-

dict that Holmström and Milgrom’s article is known for having provided the

first formal analysis of multi-tasking problems. The seeming contradiction

results from the fact that the term ‘multi-tasking problem’ refers to two very

different phenomena. On the one hand, multi-tasking can negatively affect

the trade-off between insurance and incentives, which is the problem exam-

ined by Holmström and Milgrom. On the other hand, there is the problem

at the heart of the present article: restricted implementability caused by

identification problems due to multi-tasking.24

The following substantiates the claim that multi-tasking causes no re-

strictions on implementability in any of the model variations discussed in

Holmström and Milgrom’s article. These variations employ either what Corts

(2007) calls the one-signal-per-task assumption or what may be called a no-

signal-for-some-task assumption.25 The first assumption describes that for

each task i, there is a signal j that strictly increases in the agent’s choice at

that task and is unaffected by other choices:
∂µj
∂ai

> 0 if i = j and
∂µj
∂ai

= 0

otherwise. This assumption implies that there are as many independent sig-

nals as tasks: rankDaµ = n. So even if a single agent is responsible for all

n tasks, this agent’s activity is identified (by Proposition 2) and any activity

choice can be implemented (by Theorem 1). The second assumption means

24See Inderst and Ottaviani (2009), for a recent contribution using the term ‘multitask-

ing problem’ in this second sense.
25For example, Holmström and Milgrom’s job design model uses the one-signal-per-task

assumption, while their home contractor model or asset enhancement models employ the

no-signal-for-some-task assumption.
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that some task i affects no signal j:
∂µj
∂ai

= 0 for all j. This assumption clearly

leads to an identification problem. However, this problem cannot be allevi-

ated by eliminating multi-tasking or any other form of task assignment (by

Corollary 4).26

The models discussed in Holmström and Milgrom (1991) thus concern two

extreme situations: those in which any and those in which no assignment of

tasks leads to identification. Examining only these extremes, identification by

task assignment cannot be studied. Accordingly, Holmström and Milgrom’s

results on optimal job design are not driven by the desire to induce new

activities.

6.7 Multi-Tasking with Linear Signals

Holmström and Milgrom (1991) inspired a burgeoning literature in account-

ing (see e.g. Feltham and Xie, 1994; Datar, Cohen Kulp, and Lambert, 2001)

as well as contributions to labor economics (Baker, 2000, 2002; Schnedler,

2008), which examine multi-tasking in a particularly tractable framework.

Among other things, this framework assumes that signals are linear in ac-

tivity choices. The literature starts with the observation that the principal’s

power to implement activities is restricted and proceeds to examine how con-

gruency between signals and the principal’s benefit affect optimal (linear)

contracts. It neither identifies the source of restricted implementability nor

does it consider whether and when task assignment may solve the problem.

26Incidentally, the legendary ‘multi-tasking’ examples mentioned in the introduction

also feature activity dimension that do not affect observable results (no-signal-for-some-

task-assumption); these famous implementability problems are thus also not caused by

multi-tasking.

43



With the tools introduced here, this gap can be closed. Given linear

signals, task assignment can almost always solve identification problems. The

reason is the following. Since signals are linear in activities, µj(a) = µj1a1 +

. . . + µjnan, signal j is either independent (µji = 0) or injective (µji 6= 0)

in task i. The former almost never happens, i.e., the event has Lebesgue-

measure zero. As soon as some signal j is affected by task i, however, the

whole parameter vector, µ, is task-wise injective. Any identification problems

are thus due to multi-tasking and can be solved by task assignment (by

Corollaries 3 and 4). In other words, the implementation problems in most

of the later multi-tasking models are indeed caused by multi-tasking.

7 Conclusion and Discussion

In the first step of their famous analysis of the principal agent-problem,

Grossman and Hart (1983) determine the least-costly way of implementing

a specific activity. They also observe that it may sometimes be prohibitively

costly to implement an activity. However, they neither examine when this

is the case nor how these costs are affected by task assignment. The present

paper addresses these questions. It advocates incorperating the notion of

identification into agency theory in addition to other originally econometric

concepts such as ‘likelihood ratio’ (Mirrlees, 1979; Rogerson, 1985), ‘suffi-

cient statistic’ (Holmström, 1979, 1982), and ‘hazard rate’ (see e.g. Gibbons,

1987). Identification describes the signal imperfection that restricts imple-

mentability: any activity choice can be induced if activities are identified

(Theorem 1). Task assignment can identify activities and ensure unlimited

implementability whenever changes in every dimension of an activity affect
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observables (Corollary 4). The characteristics of task assignments that solve

the identification problems echo Tinbergen’s dictum (1952) that there need

to be as many instruments as goals: the number of independent signals for

an agent must be at least as large as his number of tasks (Proposition 2).

Identification by task assignment is driven by two crucial assumptions.

First, it must be possible to enforce decision rights. For example, agents must

be prevented from carrying out tasks that they are not supposed to, while

agents who should work on these tasks must be able to do so. This points to

one possible reason why restricted access to tools and production sites is com-

mon in many firms and organizations: it gives the management more control

over how outcomes are achieved. Second, if agents collude, then identification

problems cannot be solved by partitioning tasks differently. Identification be-

comes possible because partitions generate a non-cooperative game in which

each agent’s equilibrium strategy can be separately manipulated. If agents

were colluding, which requires that they can (formally or informally) con-

dition rewards on activities although the mechanism designer cannot, they

would jointly agree to chose the least-costly activity in order to produce a

given outcome; no other way of producing this outcome could then be im-

plemented.

The results from the present paper uncover why certain task assignments,

which are proposed in the literature, such as advocates, specialists, or joint

accountability, are advantageous. The reasons are not task conflicts or ac-

countability issues; the suggested task assignments overcome identification

problems. From the results, it follows that separating tasks in order to iden-

tify agents’ activities may reduce agency costs (even if the signal structure
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remains the same).27 Using this insight and complementing existing mod-

els, optimal task bundling can be regarded as the result of a trade-off be-

tween more control, on the one hand, and exploiting complementarities, on

the other hand. Although implementability is unlimited in most traditional

single-task models, it became apparent that single-task models may well ex-

hibit identification problems, in which case biased signals can be beneficial.

In addition, results help to pin down a specific type of problem caused by

multi-tasking. Multi-tasking can create identification problems and may thus

limit implementability. This type of multi-tasking problem is latent in many

models but very different from that described by Holmström and Milgrom

(1991). As shown, multi-tasking causes no identification problems in their

article and hence does not restrict which activities can be implemented.

The present paper shows that given identification, rewards can be set such

that any desired activity is induced as a Nash equilibrium. This leaves sev-

eral questions open. Can unique implementation be achieved? Can activities

be implemented in dominant strategies or as an attractor of best-response

dynamics? All these questions are beyond the scope of the paper and left for

future research. While the paper links implementability, identification, and

task assignment in a rather general framework, it only provides a first-step

in the analysis of implementability in moral hazard models. The generality

of the structure only permits relatively fundamental statements about exis-

tence and form of task assignments that solve identification problems. Finer

predictions require additional assumptions, for example, on which tasks are

27Dealing with performance measures in accounting, Hemmer (1998) suggests that the

informational content of the same performance measure system can be altered when the

organizational design changes.
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separable and how activities are reflected in signals.
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A Proofs

The proofs are listed in the order of appearance of the respective results.

Proof Proposition 1. The proof relies on various auxiliary results that are

listed in Appendix B. Fix a partition P and a signal structure S. Suppose

all agents engage in the activity choice to be implemented, å. The proof

then has to show that an arbitrary agent, say agent l, has no incentive to

deviate if and only if conditions (3) are met. It uses marginal arguments,

where Lemma 1 ensures that agents’ expected utility is indeed differentiable

in their activity (even if rewards are not). It is relatively straightforward

to show that conditions (3) are necessary to prevent agent l from deviating.

Any (interior) choice by the agent must meet his first-order conditions, which

can be rewritten using the separability in signals and utility in form of con-

ditions (3)—the details can be found in Lemma 2 in Appendix B. Showing

that the conditions are also sufficient involves two steps. First, it is proven

that for an appropriate choice of linear rewards rl, the first-order conditions

can be met. Second, we derive that the agent’s expected utility is concave

given any linear scheme, so that the first-order conditions are also sufficient.

Let us begin by showing that once conditions (3) hold, it is possible to

find linear rewards rl : Rk → R, where rl(s) = rl0 + rl1s1 + . . . rlksk for all l

such that the first-order conditions are met. In order to avoid wealth effects,

define rl0 as an implicit function of (rl1, . . . , r
l
k) such that the outside option

is met for agent l at å:

Eε

[
ul(rl0 + rl1S1 + . . .+ rlkSk, c

l(a))
]∣∣
a=å

= ul. (7)
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Since condition (3) holds for å, there is some λl such that

λlDalµ(a)|a=å = Dalc
l(a)|a=å. (8)

Suppose that the following were true for some (rl1, r
l
2, . . . , r

l
k):

d

dµj
Eε

[
ul(rl0 + rl1S1(µ1(a), ε1) + . . .+ rlkSk(µk(a), εk), c

l)
]∣∣∣∣
a=å

= λlj · Eε

[
− ∂

∂cl
ul(rl0 + rl1S1(µ1(a), ε1) + . . .+ rlkSk(µk(a), εk), c

l(a))

]∣∣∣∣
a=å

.

(9)

Then, λl can be replaced in equation (8), so that the first-order conditions (2)

are met at a = å :

DµEε

[
ul(rl(S(µ, ε)), cl)

]
·Dalµ(a)

∣∣
a=å

= − d

dcl
Eε

[
ul(rl(S(µ, ε)), cl)

]
·Dalc

l(a)

∣∣∣∣
a=å

, for all l. (2)

All that remains to be shown is that (rl1, . . . , r
l
k) can indeed be chosen in

dependence of λlj such that for all signals j equation (9) holds. In order to

do so, we exploit that both sides of equation (9) are continuous in rlj, that

the left-hand side is bounded away from zero by the linear function rlj · κlj,

with some positive κlj (see Lemma 3 in Appendix B), while the absolute

value of the right-hand side is smaller than |λlj| because 0 > ∂u
∂cl
≥ −1. Taken

together, there is some (̊rl1, . . . , r̊
l
k) such that the both sides in equation (9)

are equal and the first-order conditions hold—for an illustration with positive

λlj see Figure 3.

In the second and last step, it will be shown that first-order conditions are

also sufficient because agent l’s expected utility is concave in al given linear

rewards. The reason is the following. By definition S(µ(a), e) is concave
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Figure 3: Existence of a reward rate, r̊lj, such that agent l’s first-order con-

dition are met.

in a for almost all realizations e of ε. Hence, rl(S(µ(a), e)) = rl0 + rl1S1 +

. . . + rlkSk is concave in a for almost all e. Moreover, cl(a) is convex in a

and ul(rl, cl) is concave in rl and cl by definition. Since ul(rl, cl) decreases

in c, ul(rl(S(µ(a), e)), cl(a))) is concave in a for almost all e. The concavity

is maintained when integrating over ε, so that Eε

[
ul(rl(S(µ(a), ε), cl(a)))

]
is

concave in a and consequently also in any sub-vector al.

Proof Proposition 2. First, we show that rank (Dalµ(a)) < |N l| for some l

and a implies an identification problem. Let al denote the respective activity

by agent l. Due to rank(Dalµ(a)) < |N l|, the set {âl|Dalµ(a)âl = (0, . . . , 0)′}

is not empty. Since A is an open set, the non-emptiness implies that there

is a value ãl (near al) with ãl 6= al but µ(ãl, a) = µ(al, a−l) and that the

mechanism designer faces an identification problem.
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Second, we prove that an identification problem implies rank(Dalµ(a)) <

|N l| for some l and a. By definition, an identification problem is present if

there are differing activities al and ãl for some agent l such that µ(al, a−l) =

µ(ãl, a−l). Since µ is continuously differentiable and A is convex, there is an

activity âl such that 0 = µ(al, a−l) − µ(ãl, a−l) = Dalµ(â)(al − ãl). This,

however, implies that rank (Dalµ(â)) < |N l|.

Proof Theorem 1. First, we prove that an identification problem leads to

limited implementability. Observe that strict convexity of costs cl(a) and

concavity of µ(a) implies that there is a unique least costly way for agent l

to produce µ̄:

arg min
âl∈{ăl|µ(ăl,a−l)=µ̄}

cl(â)|â=(âl,a−l).

Suppose there is an identification problem, then there is some µ̄, ãl and al

such that µ̄ = µ(al, a−l) = µ(ãl, a−l) but ãl 6= al . Since the least costly way

to produce µ̃ is unique, either al or ãl cannot be induced and implementability

is limited.

Second, we show that any activity can be implemented in the absence of

identification problems. If there is no identification problem, rank (Dalµ(a)) ≥

|N l| for all l and a by Proposition 2. Take an arbitrary activity a and agent l

and let al be agent l’s decision given a−l. By definition, the rank of the matrix

cannot be larger than the number of rows, k, so that k ≥ rank(Dalµ) ≥ |N l|,

which directly implies that min(k+ 1, |N l|) = |N l|. Accordingly, the rank of

the following matrix with k + 1 rows and |N l| colums can at most be |N l|:

|N l| ≥ rank

 Dalµ(a)

Dalc
l(a)

 . (10)
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On the other hand, this rank cannot be smaller than that of the first k rows:

rank

 Dalµ(a)

Dalc
l(a)

 ≥ rank(Dalµ(a)). (11)

Together, (10) and (11) imply:

|N l| ≥ rank

 Dalµ(a)

Dalc
l(a)

 ≥ rank(Dalµ(a)) ≥ |N l|.

But this is only possible if

rank

 Dalµ(a)

Dalc
l(a)

 = rank(Dalµ(a)).

Applying Corollary 2 then yields that al can be implemented with agent l.

Proof Corollary 3. By definition, identification problems due to multi-

tasking can be solved by the finest partition of tasks {{1}, . . . , {n}}.

Thus, there exists a task assignment that solves the identification prob-

lem. Conversely, if some task assignment solves the identification problem,

there is a partition P with enough independent signals for each agent l:

rank(Dalµ(a)) ≥ |N l| by Proposition 2. Consider partitioning agent l’s

|N l| tasks amongst |N l| different agents. Then, for each of these agents

l̃ ∈ N l, Dal̃µ(a) is a (k, 1)−vector and rank(Dalµ(a)) ≥ |N l| implies

rank(Dal̃µ(a)) = 1. Since each of the agents only carries out one task |N l̃| = 1

and rank(Dal̃µ(a)) = 1 = |N l̃|, Proposition 2 implies that there is no identi-

fication problem. The identification problem thus disappears with the finest

partition and is hence caused by multi-tasking.
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Proof Corollary 4. Suppose there is an identification problem given par-

tition P . Eliminate multi-tasking by considering the finest partition

{{1}, . . . , {n}}. The finest partition solves the identification problem if

and only if for all l and ãl 6= al it follows that µ(al, a−l) 6= µ(ãl, a−l).

Since each agent l carries out exactly one task i, this is true if and only

if µ(. . . , ai, . . .) 6= µ(. . . , ãi, . . .) for all i and ai 6= ãi.

Proof Proposition 3. The proof works by contradiction. Let ã ∈

arg mina rank (Daµ(a)). Suppose k̃m < n, where k̃ := mina rank (Daµ(a)).

Then,

rank Daµ(a)|a=ã + . . .+ rankDaµ(a)|a=ã︸ ︷︷ ︸
m summands

< n =
m∑
l=1

|N l|.

This implies:
m∑
l=1

rank Dalµ(a)|a=ã <
m∑
l=1

|N l|. (12)

Now, take an arbitrary partition P and suppose that there is no identification

problem. By Proposition 2, it must then hold that rank (Dalµ(a)) ≥ |N l|

for all l. This, however, contradicts equation (12). Consequently, the identi-

fication problem persists for any partition.

Proof Proposition 4. Since k̃ := mina rank(Daµ), there are at least k̃ inde-

pendent columns ofDaµ for all a. Assign the tasks belonging to these columns

to the first agent. For this agent, it now holds that rank (Da1µ(a)) ≥ k̃ =

|N1| for all a and his activities are identified. Since m > n− k̃, there remain

at least n− k̃ agents who are not yet assigned to tasks. Assign each of these

agents to one of the remaining n− k̃ tasks. Since the identification problem is

caused by multi-tasking, the activities of these agents are also identified.
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Figure 4: Dependencies of Auxiliary Results: Proposition 1 relies on Lemma

1 to 3, Lemma 3 depends on Lemma 4 and 5, and Lemma 5 on Lemma 6

B Auxiliary Results for Proposition 1

This section presents various lemmas that lay the foundations for Proposi-

tion 1. Lemma 1 ensures that agent l’s expected utility is differentiable in

his activity even if the rewards rl are not differentiable in signals. Lemma 2

guarantees that the central condition in Proposition 1, conditions (3), are

necessary. Lemma 3 is needed for the proof that the conditions are also

sufficient; it binds the marginal effect of the parameter vector on agent’s ex-

pected utility away from zero. Lemma 3 is based on Lemma 4 and 5, where

the latter relies on Lemma 6—see Figure 4.

Lemma 1 (Differentiability of Expected Utility). The expected utility is dif-

ferentiable in the activity vector.

Proof. Let SAC be the set of signal realizations at which S is absolutely con-

tinuous and SD be the set of discrete signal realizations. Then, the expected

utility can be written as

E
[
ul(rl(S), c)

]
=

∫
s∈SAC

ul(rl(s), c)f(s, µ)ds (13)

+
∑
s∈SD

ul(rl(s), c)P (S = s, µ), (14)
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where f is the joint density of S, P (S = s, µ) the joint probability distribution

given µ and c are the agent’s costs. Using that the support is constant in

µ, the derivative of the expected utility in µ can be found by directly taking

derivatives of the arguments of the integral and sum, which yields:

d

dµ
E
[
ul(rl(S), c)

]
=

∫
s∈SAC

ul(rl(s), c)
d

dµ
f(s, µ) (15)

+
∑
s∈SD

ul(rl(s), c)
d

dµ
P (S = s, µ). (16)

Since µ and c are themselves differentiable in a, the derivative of the expected

utility in the activity vector can be obtained using the chain rule.

Lemma 2 (Necessary condition for implementation). Given signal struc-

ture S and partition P, an activity å is only implementable if for all agents

some linear combination of the activity’s marginal effect on the parameter

equals that on costs:

å ∈ I ⇒ ∀l∃λl ∈ Rk : such that λl Dalµ(a)|a=å = Dalc
l(a)
∣∣
a=å

. (17)

Proof. Since we are looking for an inner maximizer, the first-order conditions

are necessary. Using the separability assumption, these conditions are equiv-

alent to (2). Next suppose that the condition on the right-hand side of (17)

is violated and show that first-order conditions cannot be met then. Sup-

pose for some agent l and all λl : λlDalµ(a)|a=å 6= Dalc
l(a)|a=å. Now choose

λ̃l := −DµEε[ul(rl(S(µ,ε)),cl)]
d

dcl
Eε[ul(rl(S(µ,ε)),cl)]

∣∣∣∣
a=å

, where the denominator is strictly negative

because of ∂ul

∂cl
< 0. Then,

λ̃lDalµ(a) 6= Dalc
l(a),
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which implies directly that the first-order condition are violated, so that

å 6∈ I.

Lemma 3. Fix µ, and c, and and consider linear rewards rl(·) such that the

agents’ outside options are met. Then, there is some κlj ∈ R with κlj > 0

such that: ∣∣∣∣ ddµj ES

[
ul(rl(S), c)

]∣∣∣∣
a=å

≥ |rlj| · κlj. (18)

Proof. Define S−j := (S1, . . . , Sj−1, Sj+1, . . . , Sk) and let F−j be the respec-

tive cumulative distribution. Denote the c.d.f. of Sj given S−j by Fj(sj|µj)

and the respective density by fj(sj|µ). Let us focus on a continuously dis-

tributed Sj(µj, εj)—the analysis in the case of a discrete distribution is anal-

ogous. For given costs c, the gain in expected utility from a change from µj

to some µ̃j with µ̃j > µj can be written as:

ES

[
ul(rl(S), c)|(µ1, . . . , µj−1, µ̃j, µj+1, . . . , µk)

]
− ES

[
ul(rl(S), c)|µ

]
=

∫∫
ul(rl0 + . . .+ rljsj + . . .+ rlksk, c) · [fj(sj|µ̃j)− fj(sj|µj)] dsj dF−j

= [ul(rl(sj), c)(Fj(sj|µ̃j)− Fj(sj|µj))]sjsj (19)

−
∫∫

∂

∂rl
ul(rl(s), c) · rj · [Fj(sj|µ̃j)− Fj(sj|µj)] dsj dF−j,

where sj and sj are the bounds of the support of Sj and possibly −∞ and

+∞. The last equality follows from integration by parts. Moreover the term

in (19) is zero because both c.d.f.’s are zero evaluated at the lower bound and

one at the upper bound. Dividing both sides by µ̃j−µj and letting µ̃j → µj,

we obtain the derivative of the agent’s expected utility with respect to µj for
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a given c:

d

dµj
ES

[
ul(rl0 + rl1S1 + . . .+ rljSj + . . .+ rlkSk, c)

]
= −

∫∫
∂

∂rl
ul(rl(s), c) · rlj ·

∂

∂µj
Fj(sj|µj) dsj dF−j

= −
∫∫

∂

∂rl
ul(rl(s), c) · rj · fj(sj|µj) ·

∂
∂µj
Fj(sj|µj)
fj(sj|µj)

dsj dF−j

= rlj · ES

[
∂

∂rl
ul(rl(S), c) ·

− ∂
∂µj
Fj(Sj|µj)

fj(Sj|µj)

]

= rlj · ES

[
∂

∂rl
ul(rl(S), c)

]
· γlj with γlj > 0, (20)

where the last equality follows from Lemma 4. Given that the agent l’s

outside option is met, Lemma 5 implies:

ES

[
∂

∂rl
ul(rl(S), c)

]
≥ δl > 0

Using this in (20) yields:∣∣∣∣ ddµjEε

[
ul(rl(S), c)

]∣∣∣∣
a=å

≥ |rlj| · κlj with κlj := δl · γlj > 0.

Lemma 4. Given µ, and c, there is a strictly positive γj for all rewards rl(·)

such that:

ES

[
∂

∂rl
ul(rl(S), c) ·

− ∂
∂µj
Fj(Sj|µj)

fj(Sj|µj)

]
= ES

[
∂

∂rl
ul(rl(S), c)

]
· γlj,

where Fj(sj|µj) = Prob(Sj≤sj|Sj′=sj′ for all j′ 6= j) and fj(sj) = ∂
∂sj
Fj(sj).

Proof. Define the real-valued random variable Bj :=
− ∂
∂µj

Fj(Sj |µj)

fj(Sj |µj) , which only

takes on positive values because ∂
∂µj
Fj(Sj|µj) ≥ 0 (since signal j stochasti-

cally increases in its parameter) and fj > 0 on the support of Sj. Using this
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notation, we get:

ES

[
∂

∂rl
ul(rl(S), c) ·

− ∂
∂µj
Fj(Sj|µj)

fj(Sj|µj)

]

=E

[
∂

∂rl
ul(rl(S), c) ·Bj

∣∣∣∣Bj ≥ βj

]
· Prob(Bj ≥ βj)

+ ES

[
∂

∂rl
ul(rl(S), c) ·Bj

∣∣∣∣Bj < βj

]
(1− Prob(Bj ≥ βj))

≥ES

[
∂

∂rl
ul(rl(S), c) · βj

∣∣∣∣Bj ≥ βj

]
· Prob(Bj ≥ βj)

+ ES

[
∂

∂rl
ul(rl(S), c) · 0

∣∣∣∣Bj < βj

]
(1− Prob(Bj ≥ βj))

=ES

[
∂

∂rl
ul(rl(S), c)

]
· γj, (21)

where the inequality follows from Bj ≥ 0 and the existence of γj ∈ [0, βj]

in the last line follows from the intermediate value theorem. Moreover, the

event Bj ≥ βj occurs with positive probability for some βj > 0 because Sj is

stochastically increasing in µj, so that:

Prob(Bj > βj) = Prob

(
− ∂
∂µj
Fj(sj|µj)

fj(sj|µj)
≥ βj

)
> 0.

This, however, means that γj has to be strictly larger than zero.

Lemma 5. Take a µ, c, and rewards rl(·) and r̃l(·) that yield the same

expected utility ul:

E
[
ul(rl(S(µ, ε), c))

]
= E

[
ul(r̃l(S(µ, ε), c))

]
= ul.

Then, for some positive δl :

E

[
∂

∂rl
ul(rl(S(µ, ε)), c)

]
≥ δl > 0.
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Proof. By Lemma 6 there exists a reward for which the cumulative distribu-

tion functions of the reward distributions cross:

r̂min := min{r̂|Prob(rl(S(µ, ε)) ≤ r̂) = Prob(r̃l(S(µ, ε)) ≤ r̂) > 0} ⊆ [r, r].

Using this crossing reward r̂, we can separate the support:

Eε

[
∂

∂rl
ul(rl(S(µ, ε)), c)

]
= E

[
∂

∂rl
ul(rl(S(µ, ε)), c)

∣∣∣∣rl(S(µ, ε)) ≤ r̂min

]
· Prob(rl(S(µ, ε)) ≤ r̂min)

+ E

[
∂

∂rl
ul(rl(S(µ, ε)), c)

∣∣∣∣rl(S(µ, ε)) > r̂min

]
· Prob(rl(S(µ, ε)) > r̂min)

≥ E

[
∂

∂rl
ul(rl(S(µ, ε)), c)

∣∣∣∣rl(S(µ, ε)) ≤ r̂min

]
· Prob(rl(S(µ, ε)) ≤ r̂min),

where Prob(rl(S(µ, ε)) ≤ r̂min) > 0 by the definition of r̂min. Since ul is

concave, ∂
∂rl
ul(rl, c) weakly falls in rl so that

E

[
∂

∂rl
ul(rl(S(µ, ε)), c)

∣∣∣∣rl(S(µ, ε)) ≤ r̂min

]
≥ ∂

∂rl
ul(rl, c)

∣∣∣∣
rl=r̂min

,

which is strictly larger than zero because ∂
∂rl
ul(rl, c) > 0. Taken together,

this implies:

Eε

[
∂

∂rl
ul(rl(S(µ, ε)), c)

]
≥ ∂

∂rl
ul(w, c)

∣∣∣∣
w=r̂min

· Prob(rl(S(µ, ε)) ≤ r̂min)︸ ︷︷ ︸
=:δl

> 0.

Lemma 6. Take a µ, and c and consider rewards rl(·) and r̃l(·) such that:

E
[
u(rl(S(µ, ε), c))

]
= E

[
u(r̃l(S(µ, ε), c))

]
.

Then, there are finite numbers r < r in the support such that for all rl(·) and

r̃l(·), there is a r̂ ∈ [r, r] in the support of of rl(S(µ, ε)) and r̃l(S(µ, ε)) for

which the cumulative distribution function of rewards cross:

Prob(rl(S(µ, ε)) ≤ r̂) = Prob(r̃l(S(µ, ε))) ≤ r̂).
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Proof. The proof works by contradiction. Suppose for all r, there exist rl(·)

and r̃l(·), such that for all r̂ ≤ r it holds that

Prob(rl(S(µ, ε)) ≤ r̂) < Prob(r̃l(S(µ, ε)) ≤ r̂),

then rl(S(µ, ε)) first-order stochastically dominates r̃l(S(µ, ε)) for values be-

low r. Together with the assumption that ul increases in w, this yields:

E
[
ul(rl(S(µ, ε), c))|rl(S(µ, ε)) ≤ r

]
> E

[
ul(r̃l(S(µ, ε), c))|r̃l(S(µ, ε)) ≤ r

]
.

Since this holds for all r, it also holds if r approaches infinity, which means

that Prob(rl(S(µ, ε)) ≤ r) = Prob(r̃l(S(µ, ε)) ≤ r) becomes one, so that

E
[
ul(rl(S(µ, ε), c))

]
= E

[
ul(rl(S(µ, ε), c))|rl(S(µ, ε)) ≤ r

]
> E

[
u(r̃l(S(µ, ε), c))|r̃l(S(µ, ε)) ≤ r

]
= E

[
u(r̃l(S(µ, ε), c))

]
, (22)

which contradicts E
[
u(rl(S(µ, ε), c))

]
= E

[
u(r̃l(S(µ, ε), c))

]
. Analogously,

one can show that r̂ is above some finite lower bound r.

C Additional Results

Proposition 5 (Identification and implementability with limited liability).

Consider a risk-neutral agent with utility, u(rl, cl) = rl − cl, and limited

liability. Then, any generic activity å = (al, a−l) can be implemented with a

finite bonus reward, if there is no identification problem.

Proof. There is no identification problem, so µ(̊al, å−l) 6= µ(ãl, å−l) for all

ål 6= ãl and l. Consequently, the distribution of S(µ(̊al, å−l), ε) differs from

that of S(µ(ãl, å−l), ε). In particular, there must be some set S1 such that for
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all ãl: Prob
(
S(µ(̊al, å−l), ε) ∈ S1

)
> Prob

(
S(µ(ãl, å−l), ε) ∈ S1

)
. Define the

first probability as P (̊al) and the latter as P (ãl). Now, pay a bonus rl ≥ 0

whenever s ∈ S1 and nothing otherwise. Then, the incentive constraint of

agent l becomes rlP (̊al) − cl(̊al, å−l) ≥ rlP (ãl) − cl(ãl, å−l). This inequality

holds if the bonus rl is large enough: rl ≥ cl (̊al ,̊a−l)−cl(ãl ,̊a−l)
P (̊al)−P (ãl)

. The lower bound

is finite for ål 6= ãl. Moreover, for ãl → ål, it converges to the finite real

number Dac
l(a)â/DaP (a)â, where â is the direction from which ã = (ãl, a−l)

approaches å. Accordingly, the desired choice ål can be implemented with a

finite bonus, rl.
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