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1 Introduction

Incentives are used to motivate an agent to engage in an activity that is costly to him but
beneficial to a principal. At the heart of any incentive scheme is some overall assessment of
the agent’s performance, which is based on information about the agent’s activity such as the
shareholder value of the employing firm, the number of working hours, profits of his department,
etc.1 A particular way to aggregate this information is to mimic the benefit with the performance
measure. Performance measures that attach exactly the same relative importance to tasks (or
aspects of the activity) as the benefit are aligned with the benefit. Such aligned performance
measures seem appealing: by rewarding the agent according to the benefit, the agent not only
incurs the costs of exerting effort at different tasks but also internalizes (at least partially) the
created benefit. Alignment between performance measure and benefit has been advocated by
practitioners and theorists alike. Kerr (1975) provides various real-life examples that show why
it is “foolish to reward for A while hoping for B.” Baker, Gibbons, and Murphy (1994) argue2

that “basing pay on an employee’s contribution to firm value would have prevented seemingly
dysfunctional behavior.” This suggests that a performance measure that is aligned with the
benefit generates a higher surplus than one that is not. The conditions under which aligned
measures yield a higher surplus, however, have not yet been examined. Here, we fill this gap
and identify when alignment is valuable.

Apart from the well-known difficulty of providing incentives when the agent dislikes risk
and his performance depends on factors beyond his control, there is often the problem that the
principal is more interested in certain aspects of the work than the agent. For example, many
academics have a stronger preference for research as opposed to teaching than their employing
institution. An important finding of this article is that the value of performance measures is
affected by the agent’s preferences. More specifically, there is a force that favors unaligned per-
formance measures that emphasize aspects of the work that the agent finds relatively attractive.
In the example, this force tilts incentives for academics towards research rather than teaching.3

In order to tease out this force, consider a stripped-down version of the relationship between
university and academic and two different performance measures. The first reflects the relative
importance of research and teaching to the university; it is aligned with the university’s benefit.
The second emphasizes research rather than teaching; it is not aligned. Otherwise both perfor-
mance measures are identical; in particular, the measurement error is the same. Which of the
two measures should the university use?

There is a sizable literature in personnel economics and accounting that quantifies the sim-
ilarity between benefit and performance measure (see e.g., Feltham and Xie 1994; Baker 2000
and 2002; Feltham and Wu 2000; Datar, Cohen Kulp and Lambert 2001). This literature is
of little help in deciding which measure to select because it does not link this similarity to the
surplus that can be generated with a measure. However, we can use the prevailing idea in this
literature that optimal incentives are the result of a trade-off involving alignment. For example,

1Jensen, Murphy, and Wruck (2004, p.17) forcefully argue that performance information has to be aggregated
to a one-dimensional measure in order to tie remuneration to it.

2In their example, the benefit of the activity is the firm value.
3Indeed incentives seem to be geared in this way—see, e.g., the report of the National Committee of Inquiry

into Higher Education (1997) commissioned by the UK government (chapter 14, section 6).
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the trade-off between distortion and risk proposed by Baker (2000, 2002) suggests that less dis-
torted measures generate more surplus when risk is held constant and that the university values
the aligned measure more. In Section 2, we analyze a formal version of this simple example and
find that the opposite is true: the university has a higher willingness to pay for the measure that
emphasizes research. The intuition is straightforward: letting the academic carry out research
is relatively cheap and produces a gain that more than offsets the loss from focusing too little
on teaching.

In order to examine this finding in a more general context, we use the famous linear multi-
tasking model by Holmström and Milgrom (1991). Following Feltham and Xie (1994), we assume
that costs are quadratic in order to obtain a tractable version with closed form solutions. The
model, which we describe in Section 3, particularly suits the purpose of studying the effect of
alignment on the value of a performance measure. In this model, benefit and performance mea-
sure are a linear function of efforts and inspired by the work of Baker (2000, 2002), we can thus
represent the performance measure using three simple parameters. The first parameter describes
how different tasks are weighted in the performance measure. Mathematically, this parameter
is the direction of the marginal effect vector. If this direction is the same as the direction of
the marginal effect vector of the benefit, the measure is aligned. The second parameter is the
variation of the performance measure that is controlled by the agent (the length of the marginal
effect vector). Finally, the third parameter is the variation beyond his control (the standard
deviation of the measurement error). This parameterization enables us to examine the effect of
each parameter while holding the others fixed. A first simple result of this type is the follow-
ing: once the weighting of tasks is fixed, the surplus generated by a performance measure gets
larger if and only if the ratio of controlled and uncontrolled variation, the signal-to-noise ratio,
increases (Lemma 1). A high signal-to-noise ratio is thus a valuable property of a performance
measure. The finding extends a result by Kim and Suh (1991) to multitasking models. Since
it is only the ratio of controlled and uncontrolled variation that matters, two rather than three
parameters suffice to characterize a performance measure with respect to the generated surplus:
the relative weighting of tasks and the signal-to-noise ratio. Hence, we can study whether align-
ment is valuable by comparing aligned and unaligned measures with the same signal-to-noise
ratio. The risk parameter suggested by Baker (2000, 2002) is equivalent to the signal-to-noise
ratio and the relative weighting is related to distortion. Baker’s trade-off between distortion
and risk implicitly assumes that a higher signal-to-noise ratio is desirable. The result provides
a formal underpinning for this assumption. In addition, it confirms the intuitive prediction that
the principal prefers a performance measure over which the agent has more control if it faces two
performance measures with equal weights. Notice that a higher signal-to-noise ratio is valuable
irrespective of the specific preferences of the agent.

The above-mentioned literature, which quantifies the similarity between benefit and perfor-
mance measure, assumes that the same level of effort on different tasks leads to the same costs
and that the costs of effort at different tasks do not interact. In Section 4, we examine this
setting and find that aligned performance measures generate more surplus than otherwise iden-
tical measures (Proposition 1). This provides a first justification for why alignment is valuable.
It generalizes a respective result by Datar, Cohen Kulp, and Lambert (2001) to a world where
the agent is risk-averse and performance is measured with error. Since alignment is equivalent
to no distortion in the sense of Baker (2000, 2002), the result implies that both quantities from
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Baker’s trade-off are related to surplus: less distortion (more alignment) and lower risk (higher
signal-to-noise ratio) are both desirable and trading them off against each other makes sense.
Taking this result to our simple example, we predict the university prefers an aligned to an un-
aligned performance measure over which the academic has the same degree of control if he finds
research and teaching equally difficult. However, the assumption that the agent is indifferent
with respect to different aspects seems somewhat restrictive.

In Section 5, we lift the restriction that effort costs have to be identical and independent
across tasks. If we compare an aligned measure with an otherwise identical measure, we find
that aligned performance measures are only more valuable if costs are identical and independent
(Proposition 2). When costs differ across tasks, we cannot maintain that alignment is a valuable
property of performance measures. So, the idea that more alignment is desirable is not robust.
Moreover, the trade-off between the two parameters suggested by Baker (2000, 2002), distortion
and risk, is no longer meaningful once costs differ: a more distorted performance measure may
well be preferred to a less distorted but equally risky one. The result shows that the parameters
of a performance measure are not sufficient to determine its value. The preferences of the
agent matter and ignoring them leads to false predictions. In our thought experiment, we
would predict that the university selects the aligned performance measure although it prefers to
emphasize research.

It is well known from the single-task agency literature pioneered by Holmström (1979, 1982)
and Shavell (1979) that insurance properties of a performance measure influence the surplus
that can be generated with this measure. In their seminal article on multitasking, Holmström
and Milgrom (1991) demonstrate that the way performance is measured may have dramatic
consequences on how effort is allocated across tasks. The value of a measure is hence determined
by insurance as well as allocative properties and it is tempting to conclude that the signal-to-
noise ratio relates to insurance properties while alignment reflects allocative properties. We
explore this idea in Section 6. We hold the signal-to-noise ratio constant and find the weighting
of tasks that maximizes surplus. This optimal weighting emphasizes tasks with low costs more
than the aligned measure (Proposition 3). This result informs us how effort costs affect the
optimal weighting. It also sheds light on the question of why optimal measures are not aligned.
All else being equal, the most valuable performance measure from the university’s perspective
emphasizes the task that the agent finds easier: research. Independent of the measure that is
employed, the agent fully internalizes costs. With an aligned measure, there is hence no need to
provide additional incentives for the agent to engage in research. At the same time, emphasizing
research means that the agent exerts less effort to prepare his teaching. The focus on research
and the ensuing detrimental effect weakens if the agent becomes less risk-averse and disappears
entirely if the agent is risk-neutral. Insurance is thus critical to understand why the unaligned
measure is preferred to the aligned one. This also explains, why the trade-off between effort
allocation and insurance cannot be reflected using the distortion and risk parameters proposed
by Baker (2000, 2002): Fixing risk in the sense of Baker does not fully determine insurance
properties; some insurance aspects are reflected by distortion, i.e. the relative weight of tasks.

In the final section we summarize and discuss the results, examine their implications, and
suggest future avenues for research.
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2 An example

This section provides a very basic version of the university example to show that an unaligned
performance measure can lead to a higher surplus than an aligned measure. The only difference
between the two measures is the weight they assign to the two tasks, research and teaching.

Denote the effort exerted by the agent for teaching and research by e = (eT, eR) and let
C(e) be the effort costs. For any given level of effort, the opportunity costs for teaching are
higher than those for research: C(e) = 10

2 · e2
T + 1

2 · e2
R. The effort creates a benefit B(e) for

the university, who values teaching more: B(e) = 2 · eT + eR. Neither efforts eT and eR nor the
benefit are directly contractible.

There are two proposals to measure performance in order to provide incentives. We abstract
from the origins of these proposals and the possibility that the two ways to measure performance
may be combined. Instead, we focus on the question: Which of the two proposals does the uni-
versity want to implement? The first proposal for measuring performance reflects the university’s
benefit rather well: PA(e, ǫA) = 2 · eT + eR + ǫA. The only difference between this performance
measure and the benefit is the term ǫA, which represents errors when measuring performance.
The alternative proposal puts more emphasis on research: PNA(e, ǫNA) = eT + 2 · eR + ǫNA.

We want to assume that the measurement errors have the same distribution: ǫA ∼ N(0, 1) and
ǫNA ∼ N(0, 1). Consequently, the two performance measures differ only by the weights they
assign to the two tasks and we can completely characterize them by the marginal effects of the
agent’s effort on each task. These marginal effects are bA := (2, 1)′ for PA and bNA := (1, 2)′ for
PNA. Similarly, it is possible to represent the marginal effects of effort on the benefit by a vec-
tor βA = (2, 1)′ . As pointed out by Baker (2002), the direction of these marginal effect vectors
indicates how much emphasis the performance measure assigns to each task. Figure 1 depicts
the two measures. The performance measure PA weighs the two tasks in the same way as the

Figure 1: The marginal effects of teaching and research on the aligned measure, bA, and on the
benefit, β, are the same; the unaligned measure, bNA, emphasizes research (the task with the
lower marginal benefit).
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emphasizes research, which leads to a lower benefit and lower costs. In order to focus attention
on the comparison of the two performance measures, the university is only allowed to buy one
performance measure. Which of the two ways to aggregate information is more valuable: the
aligned PA or the unaligned PNA?

The value of a performance measure lies in the surplus that can be generated by an incentive
scheme based on this measure. In order to compute this surplus, we impose some additional
assumptions. These assumptions have been used by Holmström and Milgrom (1991) and are
now standard in models that formally analyze the similarity between measure and benefit.4 It is
assumed that the university is risk-neutral, acts as a mechanism designer, and can condition the
agent’s wage W on the performance measure P in the following way: W (P ) = w0 + w1P , where
w0 is a base wage and w1 a performance dependent piece-rate.5 The agent’s utility is modeled
using a negative exponential form: U(v) = 1 − e(−vr), where v := W (P ) − C is the income of
the agent and r is the Arrow-Pratt measure for risk aversion; for the example, we set r = 0.5.

With these assumptions in place, it is possible to compute the optimal base wage w0 and
piece-rate w1 given that a specific performance measure is used. In this context, optimality
means that the surplus of the university is maximized while ensuring that the agent participates
(participation constraint) and has no incentive to carry out a different activity (incentive con-
straint). If we measure performance by using PA, the optimal choice of w0 and w1 generates a
surplus of 49

95 ≈ 0.52. If, on the other hand, we base incentives on the unaligned measure PNA

instead, the optimal contract generates a surplus of 121
230 ≈ 0.53; the surplus computations can

be found in Appendix B. Although the two performance measures differ only in terms of the
emphasis that they place on the two tasks, the university has a higher willingness to pay for
the measure that is not aligned with the benefit. This example illustrates that alignment is not
desirable under all circumstances and that greater similarity between measure and benefit does
not always lead to a higher surplus.

Observe that there is a clear disadvantage of using the unaligned measure: the academic
internalizes the relative benefit of teaching to a lower degree than with the aligned measure.
The unaligned measure nevertheless generates a higher surplus because efforts for teaching and
research are below efficient levels (due to the insurance problem). In this situation, increasing
effort is beneficial and the cheapest way to do so is to boost effort on the task that the academic
likes. The respective gain more than outweighs the loss due to the wrong focus.6 A more in-
depth argument how insurance issues affect the optimality of the unaligned measures follows in
Section 6.

In the next section, we introduce a more general model in order to study the extend of the

4see, e.g., Feltham and Xie 1994; Baker 2000 and 2002; Feltham and Wu 2000; Banker and Thevaranjan 2000;
Datar, Cohen Kulp, and Lambert 2001.

5As Mirrlees (1999) points out, linearity of the contract is not an innocuous assumption. Nevertheless, we
follow Holmström and Milgrom (1991) and maintain this assumption so that our results are comparable with the
existing multitasking literature. In the examined setting, linearity can also be justified by appealing to Holmström
and Milgrom (1987)— see the discussion of the linear multitasking model by Salanié (1998).

6An alternative reason that has been given for the use of unaligned measures are commitment problems
(Fershtman and Judd 1987; Sklivas 1987): if, for example, an employer faces Cournot-competition, he may want
to commit to an aggressive selling strategy by rewarding the agent for sales rather than profits even though
his benefit is defined by profits rather than sales. Notice that this explanation does not apply here because
commitment problems of this type do not feature in the example.
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findings from this example.

3 The model

In the previous section, we analyzed a simple two-task example. In this section, we extend
this example to the general n-task case. The model, which we are going to use throughout the
article, is based on the linear principal-agent model by Holmström and Milgrom (1991). As in the
example, the principal is risk-neutral, the agent has negative exponential utility and contracts are
linear in performance measures. By adding the assumptions that costs are quadratic, Feltham
and Xie (1994) obtain a particularly tractable version that allows the computation of closed
form solutions and has been employed in personnel economics (Baker 2000, 2002) as well as in
accounting (see, e.g., Feltham and Wu 2000 or Datar, Cohen Kulp and Lambert 2001). Here,
we generalize this assumption and allow costs to differ across tasks and be interrelated:

C(e) = e′Ce,

where the matrix C = (cij) is assumed to be symmetric and positive definite, so that costs are
always positive: e′Ce > 0 if e 6= (0, . . . , 0)′. The cost function considered by Feltham and Xie
(1994) and the ensuing literature (see Baker 2000 and 2002; Feltham and Wu 2000; Banker and
Theveranjan 2000; Datar, Cohen Kulp, and Lambert 2001) is a special case of the cost function
considered here and can be obtained by setting C = 1

2I, where I is the identity matrix.
Denote the benefit of the principal in the n-task case by

B(e, η) = β′e + η,

where β′ = (β1, . . . , βn) is the vector of marginal effects and η is a noise term with mean zero,
which reflects influences on the benefit beyond the control of the agent. Performance measures
in this setting can be written as

P (e, ǫ) = b′e + ǫ,

where b′ = (b1, . . . , bn) is the vector of marginal effects and ǫ is a normally distributed noise
term with expected value zero and variance σ2. Again, the noise term captures any effects on
the performance measure that cannot be influenced by the agent. The noise that influences the
benefit may stand in an arbitrary relation to the noise that influences the performance measure:
it may be independent, correlated or identical (ǫ = η). Hence the description of the performance
measure encompasses the special case that it is identical to the benefit (b = β and ǫ = η).

Any performance measure is uniquely characterized by the marginal effect vector b and the
variance of the error term σ2. Equivalently, performance measures can be represented using three
parameters. The first parameter is the direction of the marginal effect vector b̂ := b

||b|| = b√
b′b

,

which determines how much weight is attached to each task and is standardized to length one.
The second parameter is the length of the marginal effect vector ||b|| =

√
b′b, which represents

the variation of the performance measure under control of the agent. The third parameter is
the standard deviation σ, which stands for the variation that is not controlled by the agent.

Next, we formally link the marginal effect vector of the performance measure to that of the
benefit.
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Definition 1 (Alignment). Performance measure and benefit are aligned if their marginal effect

vectors have the same direction: b = γβ for some γ different from zero.

It is natural to think of a positive factor γ. However, γ can also be negative. Then, a larger mea-
surement means that the benefit is lower and the measure is an indicator of “bad” rather than
“good” performance. Rewarding for less “bad performance” is perfectly equivalent to rewarding
for more “good performance.” Thus, it does not matter for practical purposes whether γ is pos-
itive or negative. The definition relates to various concepts that describe the similarity between
benefit and performance measure: aligned performance measures minimize the discongruity of
Feltham and Xie (1994), the non-congruency by Feltham and Wu (2000), the distortion by Baker
(2000) (for positive γ) and the incongruity of Datar, Cohen Kulp, and Lambert (2001).7

In addition to alignment, we define the following concept.

Definition 2 (Signal-to-noise ratio). The signal-to-noise ratio is the ratio of the variation under

the control of the agent ||b|| and the variation beyond his control σ:

ρ :=

√

(

∂Eǫ(P (e,ǫ))
∂e

)′ (
∂Eǫ(P (e,ǫ))

∂e

)

σ
=

||b||
σ

.

The squared signal-to-noise ratio ρ2 is identical to a respective concept defined by Baker (2002),
which in turn generalizes the single-task concept by Kim and Suh (1991) and is equivalent to the
product of sensitivity and precision considered by Banker and Datar (1989) in the single-task
setting.8 Finally, the squared signal-to-noise ratio amounts to the sum of the squared (single-

task) signal-to-noise ratios at the different tasks: ρ2 =
b21
σ2 +. . .+ b2n

σ2 . In summary, the signal-noise
ratio can in many ways be regarded as a multiple-task extension of respective concepts for the
single-task model. Moreover, just as in the single task case, a higher signal-to-noise ratio is
valuable.

Lemma 1. A performance measure generates a higher value than another performance measure

with the same direction b̂ if and only if it has a higher signal-to-noise ratio.

Proof. The surplus generated by a measure (b, σ2) is computed in Lemma 2 in Appendix A to
be:

φ(b, σ2) =
1

4

b′C−1ββ′C−1b

b′C−1b + 2rσ2
.

Using that σ2 = ||b||2
ρ2 and replacing b = b̂ · ||b||, we get the following surplus formula:

φ

(

b̂ · ||b||, ||b||
2

ρ2

)

=
1

4

b̂′C−1ββ′C−1b̂

b̂′
(

C−1 + 2 r
ρ2 I

)

b̂
. (1)

7The former two concepts are sums of squared deviations and reduce to zero if we plug in a marginal effect
vector for the performance measure, which is a multiple of the marginal effect vector β of the benefit. The latter
depends on the cosine of the angle between b and β, which attains its maximum value of one if b = γβ with
positive γ.

8Banker and Datar (1989) also suggest a signal-to-noise ratio for multiple signals. This suggestion does not
concern us here, as we are supposing that the information of various signals is already embodied in the performance
measure.
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The result then follows from the observation that this quantity is monotonically increasing in
ρ.

Hence, a high signal-to-noise ratio is desirable. This generalizes a respective finding by Kim and
Suh (1991) to the multi-task setting. The intuition is the same as in the single-task case (Kim and
Suh, 1991): a higher signal-to-noise ratio means that the same incentives can be provided while
imposing less uncertainty on the agent. The result also implies that instead of having separate
parameters for controlled and uncontrolled variation, it suffices to use the signal-to-noise ratio
when describing the surplus generated by a performance measure. It seems reasonable to require
from any notion of risk that a performance measure with less risk is not ranked worse than a
performance measure with more risk (otherwise we could simply add noise to the former). Since
the signal-to-noise ratio is inversely related to Baker’s notion of risk (2002), the result asserts
that his notion fulfills this requirement. It also confirms the very intuitive prediction that the
university prefers performance measures over which the agent has relatively more control. Notice
that a larger signal-to-noise ratio is more valuable independent of costs C, the degree of risk
aversion r, or other parameters in the model. The prediction that the university prefers a higher
signal-to-noise ratio is hence robust to changes in these parameters. In the next section, we
encounter specific conditions under which greater alignment is more valuable.

4 Identical and independent costs across tasks

In the above example, we have already seen that aligned measures may not be more valuable
than otherwise identical unaligned measures. In this section, we limit our attention to the case
of costs that are identical across tasks and independent. This case deserves particular attention
because several models that examine the relationship between benefit and performance measure
are based on this assumption.9

For the case of equal and independent costs, C = 1
2I, the surplus that can be generated by

a performance measure becomes:10

1

2
· b̂′ββ′b̂

b̂′b̂
(

1 + r
ρ2

) .

Using the definition of the vector dot product, we can rewrite b̂′β = ||b̂|| · ||β|| ·cos θ = ||β|| ·cos θ,

where θ is the angle between β and b̂. Rewriting the surplus accordingly yields:

1

2
· (cos(θ))2β′β

1 + r
ρ2

. (2)

For an aligned measure, the angle is either zero or 180◦, the cosine is 1 or -1, and the surplus
attains:

1

2
· β′β
1 + r

ρ2
A

,

9see, e.g., Feltham and Xie 1994; Baker 2000 and 2002; Feltham and Wu 2000; Datar, Cohen Kulp, and
Lambert 2001.

10This follows if we replace C−1 = 2 · I in equation (1).
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where ρA is the signal-to-noise ratio of the aligned measure. Comparing this surplus with (2),
we observe that a performance measure can only create a higher surplus if it has a higher signal-
to-noise ratio, ρ > ρA, but not if controlled and uncontrolled variation are constant, i.e. ρ = ρA.
We summarize these considerations in the following proposition:

Proposition 1. Suppose costs are independent and identical: C = 1
2I. Then, an aligned per-

formance measure maximizes the generated surplus if compared to otherwise identical unaligned

performance measures and even if compared to the larger class of measures with the same signal-

to-noise ratio.

This simple result provides a first formal argument as to why alignment may be desirable
in a world where insurance matters. The result extends a respective finding by Datar, Cohen
Kulp, and Lambert (2001) to the case that the agent is risk-averse and performance is measured
with error. In addition, it links the second parameter in Baker’s trade-off (2000, 2002) to
surplus and hence completes the justification of the implicit assumption that lower risk and
lower distortion are desirable: Holding the signal-to-noise ratio constant, a less distorted measure
generates more surplus (see Equation (2)) and the maximal surplus is achieved by an aligned
measure (Proposition 1).11 This link between quantities that are traded-off and surplus is
not evident. As an example, consider the concepts of non-congruency component and risk-
minimization component by Feltham and Wu (2000). Once the risk minimization component
is fixed, the relationship between the directions of the marginal effect vector of benefit and
performance measure has no effect on surplus. In particular, a more aligned measure does not
generate a higher surplus.12

Most importantly, the result confirms the received wisdom that alignment is desirable and
offers the prediction that the university selects the aligned rather than an otherwise identical
measure that is not aligned. Still, the university chooses the performance measure that empha-
sized research rather than the aligned measure. This seems to be a contradiction. Proposition 1,
however, rests on the assumption that costs are identical and independent across tasks while
the agent preferred research to teaching. In the next section, we examine more closely the
importance of identical costs for the value of aligned measures.

11Strictly speaking, less distortion does not necessarily imply a higher surplus when using the definition by
Baker (2000, 2002). Baker defines distortion to be larger, the lower cos(θ), where θ is the angle between the
marginal effect vectors. This means, however, that a measure bI that points in the opposite direction of the
benefit, so that the angle is 180o has the largest distortion, while the distortion of a measure bII that nearly
points in the same direction as the benefit, say with an angle of 10o, is lower: cos(180o) = −1 < 0.98 < cos(10o).
Still, bI generates a larger surplus than bII—see equation (2). This problem can easily be rectified by re-defining
distortion to be lower, the larger (cos θ)2 or the larger | cos θ|.

12A referee of an earlier draft conjectured that aligned measures generate more surplus than unaligned measures
when the risk-minimization component is held constant. Appendix E refutes this conjecture.
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5 Differing and interdependent costs

If we allow costs to differ and to be interrelated, the surplus that is generated from optimally
using a performance measure with alignment b̂ and signal-to-noise ratio ρ amounts to:13

1

4
· b̂′C−1ββ′C−1b̂

b̂′(C−1 + 2 r
ρ2 I)b̂

.

Maximizing this surplus in the alignment b̂ is no longer simple because the cost matrix C enters
the relationship between b̂ and β and we cannot use the convenient representation based on the
angle between b̂ and β. The following proposition formalizes the effect of costs—the proof is
given in Appendix C.

Proposition 2. An aligned performance measure maximizes the surplus amongst otherwise

identical measures if and only if effort costs are identical for all tasks and independent: C = I ·c,
with c being some strictly positive real number.

An important insight from this result is that greater alignment between benefit and measure is
generally not desirable. The context in which alignment is desirable is specific in many ways.
As an example take the quadratic form of effort costs or the linearity of the benefit function.
Proposition 2 informs us that even within this restricted setting, the optimality of alignment is
not robust. Notice that the linearity of the benefit function implies that efforts do not interact
in the production of benefit. The units of effort are arbitrary and can possibly be chosen such
that benefit becomes a linear function in effort. This, however, induces an interaction of efforts
in the cost function. Since there is often some form of interaction in reality (either on the benefit
or the cost side), the optimality of aligned performance measures is likely to be rare.

Another implication of the finding is that the trade-off between distortion and risk in the
form suggested by Baker (2002) is not robust either. There is no reason to trade low risk for low
distortion if low distortion is not desirable. Finally, the result reveals that costs are important
to compare the value of performance measures and hence to make predictions about the choice
of performance measures.14 Ignoring that the agent likes research more than teaching would
lead to the false prediction that the university prefers the aligned measure.

In the single-task model, it is possible to compare the value of measures by looking at its
parameters alone (Kim and Suh, 1991). The analysis of Feltham and Xie (1994) and Baker (2000,
2002) indicates that comparisons under multitasking also require information on how benefit is
created. In the general case, which we have considered here for the first time, even that is not
sufficient: agent’s costs also matter. In multitasking models, the value of a performance measure
in relation to another measure is thus highly context specific: it depends on the principal (in
form of β) and on the agent (in form of C).

In the next section, we examine in more detail why greater alignment does not necessary
lead to a higher surplus.

13See the re-parameterized surplus formula from equation (1).
14Re-parameterizing the model in such a way that effort costs are identical and independent does not eliminate

this problem. Effort costs then enter the signal-to-noise ratio (see Appendix F)
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6 Alignment, insurance, and allocation

In the previous section, we have seen that alignment is not necessarily a desirable property of
performance measures. In order to shed more light on this phenomenon, we compute the relative
weighting of tasks such that the respective performance measure generates the largest surplus
amongst all measures with the same controlled and uncontrolled variation—the computation
can be found in Appendix D.

Proposition 3. The performance measure that maximizes the surplus amongst all measures

with controlled variation ξ and uncontrolled variation σ has the marginal effect vector:

b∗ = k

(

I +
2r

ρ2
C

)−1

β, (3)

where k > 0 is a standardization factor,15 which ensures that the vector has the controlled

variation ξ and ρ = ξ
σ
.

The proposition characterizes the optimal measure, where optimal means that the surplus is
maximized holding controlled and uncontrolled variation constant. It also gives us two interest-
ing insights into the relationship between optimal and aligned measures. These insights allow
us to identify why the intuition that alignment is desirable fails, why the university prefers the
unaligned measure, and why the trade-off between distortion and risk in the form suggested by
Baker (2000, 2002) only works in the case of equal and identical costs.

First, notice that the agent always fully internalizes the relative marginal costs of tasks. With
an aligned measure, he also internalizes the relative marginal benefits. The optimal measure
weighs tasks differently. For example in the case of independent costs (cij = 0), it emphasizes
those tasks that have lower marginal costs (given the same effort level)—just as the performance
measure in the university example.16 Consequently, the cost side is given more weight than the
benefit side and the agent’s allocation of effort across tasks will be skewed towards tasks with
lower marginal costs. In this sense, effort is “misallocated across tasks” if the optimal rather
than the aligned measure is used.

Second, the difference in emphasis between the optimal and the aligned measure is reduced
if the signal-to-noise ratio increases. Likewise, it drops if the agent’s risk-aversion falls; the
optimal measure is aligned if the agent is risk-neutral. So, the weighting of the optimal measure
approaches that of an aligned measure if the effect of uncertainty gets smaller, either because
there is less uncertainty or because the agent cares less about uncertainty.

In addition to these two insights, observe that by focusing effort on a specific task, this task
is measured more accurately; the task-wise signal-to-noise ratio increases. Taken together, these
observations imply that insurance plays a crucial role in explaining why aligned measures do not
maximize surplus. It also means that the signal-to-noise ratio, the parameter suggested by Baker
(2002) to measure risk, does not fully capture all aspects related to risk. So, the parameters
proposed by Baker do not describe a trade-off between effort allocation and insurance if costs

15The standardization factor k takes the value k = ± ξ
√

β′(2 r

ρ2
C+I)−2β

.

16Since costs are quadratic, marginal costs depend on the effort level. Holding this effort at the same level for
two tasks i and j allows us to compare their marginal costs by comparing the cost coefficients cii and cjj .
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differ. In a more general sense, however, such a trade-off seems to operate:17 if the agent is risk-
neutral, then insurance does not matter, mis-allocation considerations dominate and the aligned
measure is optimal. As the agent gets more risk-averse, insurance becomes more important.
Then, insurance considerations outweigh the worse allocation of effort across tasks and it pays
for the principal to focus the effort of the agent using the performance measure. Tasks with
lower costs are emphasized in the performance measure because this is the least-costly way to
focus the agent’s effort.

The overall message that emerges from this section is that the way a performance measure
affects insurance does not only depend on the signal-to-noise ratio. The weighting of tasks in
the performance measure is also important.

7 Conclusion

We have analyzed under which conditions measures that are aligned with the benefit are more
valuable than measures that are not aligned. While it is known that alignment is desirable if
agents are risk neutral or have full control over the performance measure, we find that aligned
measures also generate a larger surplus than otherwise identical measures in the more interesting
case that insurance matters. This, however, holds true only if effort costs are identical across
tasks and independent.

While equal and independent costs ensure that aligned measures generate a higher surplus
than otherwise identical measures, they do not guarantee that a greater similarity between
measure and benefit increases surplus. Such a claim is specific to the concept that we use to
quantify similarity and the literature offers different respective concepts: the discongruity by
Feltham and Xie (1994), the non-congruency by Feltham and Wu (2000), the distortion by
Baker (2000, 2002) and incongruity by Datar, Cohen Kulp, and Lambert (2001). Examining the
relationship between these concepts and the generated surplus has not been the aim of this article
and is left for future analysis. In all of these concepts, however, alignment plays a prominent
role, and here we supply a condition that is necessary for alignment to be valuable. The present
article thus provides a starting point for examining when a greater similarity between measure
and benefit is desirable.

More importantly, the article shows that the trade-off between effort allocation and insurance
involved in incentive design can be reflected by the two parameters of performance measures
proposed by Baker (2000, 2002), distortion and risk, if effort costs are identical and independent
across tasks. The beauty of distortion and risk is that they are easy to grasp and possibly
even observable in practice. While distortion and risk may be helpful pedagogical devices to
illustrate the trade-off between effort allocation and insurance, they are, however, not enough
to fully understand this trade-off.

We have seen that more distorted measures can generate more surplus than aligned measures
with the same risk, where risk is defined in the sense of Baker (2002). They do so despite the
fact that they attach more emphasis to tasks with low marginal benefit than unbiased measures
and channel the agent’s effort towards the “wrong” tasks. The higher the risk-aversion of the

17Schnedler (2008) decomposes agency costs into effort allocation loss and insurance loss in order to formalize
the quantities that are traded-off.
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agent, the more pronounced is this “misallocation” effect. So, the attitude of the agent towards
risk matters although the risk characteristic proposed by Baker (2002), the signal-to-noise ratio,
is fixed. This finding implies that the signal-to-noise ratio alone does not capture all aspects of
the performance measure that are relevant to insurance. Conversely, the relative weighting of
tasks also affects the risk imposed on the agent. This observation calls for a new concept that
could describe the insurance properties of a performance measure and disentangle them from its
allocative properties. Future research could address this lack.

An important insight from this article is that parameters of the performance measure alone
cannot reflect its value relative to other measures. Predictions about the use of performance
measures have to take into account how difficult the agent finds which task. Here, we assumed
that the employer knows effort costs but in a more general setting, the employer might have
to elicit them. For obvious reasons, it is not possible to let the worker, who usually knows his
costs, have complete freedom in choosing the performance measure. An interesting question for
follow-up research may be whether it is possible to elicit these costs by offering the worker a
menu of performance measures from which he can select one.
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A Lemmata

At various instances, we need the maximal surplus that can be generated by a specific perfor-
mance measure (b, σ2). This surplus is computed in the following lemma.

Lemma 2. Given a performance measure with marginal effects b and variance σ2, the optimal

rate of performance pay is:

w∗
1 =

β′C−1b

b′C−1b + 2rσ2
. (4)
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Under this rate, the agent will exert the effort:

e∗ =
w∗

1

2
C−1b, (5)

which yields a surplus of:

φ(b, σ2) =
1

4
· b′C−1ββ′C−1b

b′C−1b + 2rσ2
. (6)

Proof. The best linear scheme that is based on performance measure P maximizes the surplus
of the principal while ensuring that the agent has an incentive to select a particular activity
(incentive constraint) and is accepting the contract (participation constraint):

max
w0,w1

E (B(e) − w0 − w1P (e)) (7)

such that e ∈ argmaxĕE (U (w0 + w1P (ĕ) − C(ĕ))) (8)

and E (U (w0 + w1P (e) − C(e))) ≥ 0, (9)

where the outside option of the agent has been standardized to zero. Using the linearity of
the performance measure, the normality distribution of the noise, and the shape of the utility
function, the base wage can be chosen to compensate the agent for any harmful effects of
uncertainty (w0 = C(e)−w1b

′e+w2
1r

b′b
ρ2 ), so that the participation constraint can be eliminated

from the program (see e.g. Salanié 1998 or Kräkel 1999). Recalling the definitions of performance
measure, benefit, and costs, as well as the risk neutrality of the principal, the program then
simplifies to:

max
w1

β′e − e′Ce − w2
1

2
rσ2

such that e ∈ argmaxĕ E
(

U
(

w0 + w1b
′ĕ − ĕ′Cĕ

))

.

(10)

Consider the problem that the agent faces for a given incentive scheme (w0, w1), i.e. the side
constraint of the principal’s problem. Because the agent’s utility function U is monotonic, the
agent chooses effort so as to maximize the difference between received wage and effort costs:

max
e

w1b
′e − e′Ce.

The objective function is concave because the second derivative is a symmetric, negative definite
matrix (−C). Thus, the maximizer can be determined by the first-order condition. Solving for
e yields:

e =
w1

2
C−1b. (11)

Note, that C−1 exists because C is positive definite. Replacing e in equation (10) by the optimal
effort from equation (11) yields the following expression for the objective function:

max
w1

w1

2
β′C−1b − w2

1

22
b′C−1b − w2

1

2
rσ2. (12)
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Again, the objective function is concave and solving the first order condition gives the maximizer:

w1 =
β′C−1b

b′C−1b + 2rσ2
. (13)

Using the optimal wage rate in (12) finally results in the surplus from an optimal incentive
scheme based on the performance measure with marginal effect vector b and variance σ2:

φ(b, σ2) =
1

4
· b′C−1ββ′C−1b

b′C−1b + 2rσ2
.

The next lemma helps us to find the set of maximizing marginal effect vectors for a specific
quadratic form. It is needed to prove Lemma 4.

Lemma 3. The set of maximizers of the expression

b′C−1ββ′C−1b

b′Hb
,

where H is a symmetric and positive definite matrix, is
{

b∗
∣

∣b∗ = k · (CH)−1
β, with k ∈ IR, k > 0

}

.

Proof. Because H is symmetric and positive definite, we can decompose it: H = PΛP ′ and
define H

1
2 = PΛ

1
2 P ′. Now, define b̌ := H

1
2 b, so that b = H− 1

2 b̌ and consider the transformed
problem:

max
b̌

b̌′H− 1
2 C−1ββ′C−1H− 1

2 b̌

b̌′b̌
.

To advance on this problem, we fix the length of b̌ to some arbitrary value k2: b̌′b̌ = k2. By
varying k, we will later obtain the set of all possible solutions. The respective Lagrangian for a
given k is:

L(b̌, k) = b̌′H− 1
2 C−1ββ′C−1H− 1

2 b̌ − λ
(

b̌′b̌ − k2
)

.

The corresponding first-order conditions are:
(

(H− 1
2 )′C−1ββ′C−1H− 1

2 − λI
)

b̌∗ = 0 and (b̌∗)′b̌∗ = k2. (14)

The first condition is an eigenvalue problem; to obtain b̌∗, we have to find the eigenvalues λ of the
matrix (H− 1

2 )′C−1ββ′C−1H− 1
2 . By defining x := (H− 1

2 )′C−1β, the matrix can be re-written as
xx′ and it becomes apparent that the matrix is symmetric and of rank one. Due to the latter,
there can be only one non-zero eigenvalue. Hence, this value is identical to the trace of the
matrix xx′:

EV(xx′) = tr(xx′) = tr(x′x) = x′x,

where EV(·) denotes the eigenvalue and tr(·) is the trace-operator. Replacing the eigenvalue in
the eigenvalue problem, we get:

(xx′ − x′xI)b̌∗ = 0.
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Obviously, b̌∗ = kx is a solution to this problem. Again due to the rank of xx′, it is also the only
solution. To recover the solution in the original problem, we have to reverse the transformation:

b∗ = H− 1
2 b̌∗ = kH− 1

2 x = kH− 1
2 H− 1

2 C−1β = kH−1C−1β = k(CH)−1β

The set of all solutions is then obtained by letting k vary.

The following lemma helps to identify the marginal effect vectors that maximize the surplus
generated by a performance measure. We use it to prove Proposition 2.

Lemma 4. A performance measure that maximizes the surplus

φ

(

b,
||b||2
ρ2

)

=
1

4

b′C−1ββ′C−1b

b′(C−1 + 2 r
ρ2 I)b

(15)

has a marginal effect vector from the set

{

b

∣

∣

∣

∣

b = k

(

I +
2r

ρ2
C

)−1

β with k ∈ IR

}

.

Proof. Using the definition of the signal-to-noise ratio, we can replace σ2 in the surplus formula

(6) by b′b
ρ2 . Hence, the surplus amounts to: 1

4
b′C−1ββ′C−1b
b′(C−1+2 r

ρ2 I)b
. The matrix

(

C−1 + 2r
ρ2 I

)

is symmetric

and positive definite. Thus, we can apply Lemma 3 with H =
(

C−1 + 2r
ρ2 I

)

and find that the

set of maximizers to be:

{

b

∣

∣

∣

∣

b = k
(

I + 2r
ρ2 C

)−1
β with k ∈ IR

}

.

B Computations for the example

Equation (6) from Lemma 2 directly supplies us with a general formula to compute the surplus
that can be generated using a performance measure (b, σ2). We set the Arrow-Pratt measure
of risk aversion and the variance of the error term to the values in the example, σ2 = 1 and
r = 0.5. If we then plug in the marginal effects of the aligned measure PA, bA = (2, 1)′, we
obtain the following surplus:

φA =
1

4

(

(2, 1)

(

2
10 0
0 2

)(

2
1

))2

(2, 1)

(

2
10 0
0 2

)(

2
1

)

+ 1

=

(

14
10

)2

28
10 + 1

=
49

95
≈ 0.52 (16)

If we use the marginal effects of the unaligned performance measure PNA, bNA = (1, 2)′, we get:

φNA =
1

4

(

(1, 2)

(

2
10 0
0 2

)(

2
1

))2

(1, 2)

(

2
10 0
0 2

)(

1
2

)

+ 1

=

(

2
10 + 20

10

)2

2
10 + 80

10 + 1
=

121

230
≈ 0.53. (17)
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C Proof of Proposition 2

By Lemma 4, the surplus is maximized by a performance measure if the marginal effect vector

is in the set

{

b

∣

∣

∣

∣

b = k
(

I + 2r
ρ2 C

)−1
β with k ∈ IR

}

. For an arbitrary β, alignment requires that

b = γβ. So, aligned performance measures maximize the surplus if and only if k
(

I + 2r
ρ2 C

)−1
=

γI or (2 r
ρ2 C + I) = Iκ, where κ is any real number. This is equivalent to C = I κ−1

2
ρ2

r
for any

κ. In other words, costs must be a multiple of the identity matrix: C = cI, where c has to be
positive because C has to be positive definite.

D Proof of Proposition 3

Ignoring for a moment the restriction that performance measures should have the same controlled
and uncontrolled variation, we can use Lemma 4 to obtain the set of marginal effect vectors for
performance measures that maximize the surplus:

{

b

∣

∣

∣

∣

b = k

(

I +
2r

ρ2
C

)−1

β with k ∈ IR

}

.

Let ξ be the controlled variation under consideration, then a subset of this set can be obtained
by setting k = ± ξ

√

β′(2 r

ρ2 C+I)−2β
. The elements of this subset still maximize the surplus but they

also have controlled variation ξ. Thus, a performance measure from the set with a respective k

and uncontrolled variation σ2 maximizes surplus in the class of all performance measures with
controlled variation ξ and uncontrolled variation σ2.

E Risk minimization component

Feltham and Wu (2000) suggest reflecting the uncertainty of a performance measure by a risk

minimization component (defined on page 164 below equation (9) in their article):

R := r · Sle
∗,

where e∗ is the effort vector in the first-best situation, i.e., when effort e can be legally enforced,
and Sl is a sensitivity measure defined in Equation (6) by Feltham and Wu. Notice that their
Equation (6) reduces to Sl = µ̂l in the case considered here, which is nothing but the (transposed)
marginal effect vector standardized by the uncontrolled variation: µ̂l = b′

σ
. The first best effort

vector equals the benefit marginal effect vector e∗ = β (see middle of page 160 in Feltham and
Wu 2000). Overall the risk minimization component is:

R =
r

σ
· b′β. (18)

By equation (6), the surplus generated by a performance measure in the case considered by
Feltham and Wu (C = 1

2I) is:

Φ(b, σ2) =
1

2

b′ββ′b
b′b(1 + rσ2)

.

18



Using the definition of R, this is equivalent to

Φ(b, σ2) =
1

2

R2

b′b(1 + rσ2)
· σ2

r2
=

1

2
· 1

( r2

σ2 + r3)
· R2

b′b
.

Holding R constant, the surplus no longer depends on β. Consequently, the generated surplus
is independent from the relationship between β and b once the risk-minimization component R

is fixed.

F Re-parametrization

In the model, performance measures, costs and benefit are stable and common knowledge. The
same model, however, can be parameterized differently by re-defining effort since the units in
which we express effort in the model are to some degree arbitrary. In fact, it is possible to
re-parameterize the model by rescaling effort such that costs become independent and iden-
tical. Take effort e and transform it to obtain ẽ = C

1
2 e, where C

1
2 is a decomposition of

the positive definite matrix C such that (C
1
2 )′C

1
2 = C. After re-parameterization, costs are

C̃(ẽ) = ẽ′ẽ = e′Ce = C(e) and hence independent and identical. Expressing the marginal

effect vector for benefit and performance measure in the rescaled units, we get: b̃ = (C− 1
2 )′b

and β̃ = (C− 1
2 )′β. Since costs under re-parameterization are independent and identical, aligned

performance measures are more valuable than unaligned measures with the same signal-to-noise

ratio, ρ̃ = ||b̃||
σ

by Proposition 1.
The re-parameterization does not affect whether a performance measure is aligned: a measure

that is aligned before re-parameterization, b = γβ, is also aligned after re-parameterization,
b̃ = (C− 1

2 )′b = γ(C− 1
2 )′β = γβ̃. On the other hand, the controlled variation (and hence the

signal-to-noise ratio) is not the same after re-parameterization:

||b|| =
√

b′b 6=
√

b′C−1b = ||b̃|| = ||b||C−1 ,

where || · ||C−1 is an inverse-cost norm that is used instead of the Euclidean norm. This explains
why alignment is valuable in the re-parameterized model but not in the original model: aligned
measures are compared to different measures in the two models. The set of measures considered
in the original model depends only on the parameters of the measure (the variation under control
and beyond control of the agent) while the set of measures in the re-parameterized model also
depends on the relative costs. So, either more alignment is not necessarily preferable (original
model) or costs are taken into account in the signal-to-noise ratio (re-parameterized model).
Overall, re-parameterization cannot alter the structure of the underlying model and does not
alter the central insight of Proposition 2: if risk is defined in the sense of Baker (2002) as the
signal-to-noise ratio that is not adjusted for effort costs and if this signal-to-noise ratio is held
constant, more distortion may increase surplus.
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